
 A Technical guide to:

 DAAD Adventure Writer - Version 2
 Release 1

 A multi-machine adventure writing system.

 Revised in November '91.

 (c) 1988/89/90/91 Infinite Imaginations

All Rights reserved. No part of this publication may be copied,
loaned, hired or reproduced in any form whatsoever including
electronic retrieval systems without the prior written consent of
the authors.

 Contents

1.0 Overview
 A look at general principles for the system.

2.0 Disk contents
 A description of the supplied disks, and their contents.

3.0 Worked example
 Taking a file and creating an adventure on each machine.

4.0 The Interpreters
 A description of the operation of the interpreters.
 4.1 The CondActs
 A full description of the CondActs in the system.
 4.1.0 Terms used in this section
 4.1.1 Indirection
 4.1.2 Conditions
 4.1.3 Actions
 4.2 Machine versions
 Details on the machine specific interpreters.
 4.2.0 IBM
 4.2.1 Spectrum 48/128
 4.2.2 Amstrad CPC 464/664/6128
 4.2.3 CBM 64/128
 4.2.4 MSX
 4.2.5 Atari ST
 4.2.6 Amiga
 4.2.7 PCW 8000 & 9000 series
 4.3 Errors
 Error reports generated by the interpreters.
 4.4 The parser
 A discussion of aspects of the parsers
 4.4.0 The English parser
 4.4.1 The Spanish parser
 4.5 The flags
 Detailed breakdown of flag usage.

5.0 The Source file (.SCE)
 The format of the source file.
 5.1 Syntax of the Source file
 5.2 Precompiler (#) commands

6.0 The Compiler ("DC")
 Usage of the program to convert the Source file into a
 database file.
 6.1 Command Line
 6.2 Errors & Warnings

7.0 The graphics editors
 Usage of the graphics editors for the system.
 7.1 Drawstring ("DG")
 7.1.1 The Main Menu
 7.1.2 The Graphics Menu
 7.1.3 The Characters Menu
 7.1.4 The Window menu
 7.1.5 The Text Colours Menu
 7.1.6 Drawstring Editor Basic Operation
 7.1.7 The Spectrum and MSX
 7.1.8 The Amstrad CPC
 7.1.9 The Commodore 64
 7.2 Image ("DMG")

Appedicies
 A - The character set

CONEXIÓN ENTRE ORDENADORES
EXTERN
LISTA DE LOS PROGRAMAS DEL DAAD V2

 Section 1 - Overview

The basic principle behind DAAD is to provide a system where a
game needs to be written only once and will then work on all
machines. This of course is not truly possible without
sacrificing facilities. So a compromise has been arrived at where
an amount of extra work may need to be done to allow each machine
to be used to best advantage. The core of the game design remains
independent reducing development and debugging time considerably.

DAAD is a programming language designed especially for writing
Adventure Games. It is loosly based on the QUILL and PAW systems
of Gilsoft, and a familiarity with their operation is useful. The
main differences from these utilities are as follows:

* DAAD Uses the a compiler system similar to the CPC PAW.

* The DAAD database can be compiled for a variety of computers.
 Thus the same game can be run on all supported computers with
 little or no change.

* The DAAD Process language is far more advanced with many
 features of traditional languages such as looping and
 indirection, although it lacks several of the machine specific
 commands for PAW.

* It costs a lot of dough to buy a copy!

There are several terms used in this text which should be
defined:

Development Machine: The computer you write the game on. There
are development versions of DAAD for IBM and Atari ST (although
only the IBM has a full set of utilities at the moment).

Object machine: The computer the game will finally run on. DAAD
supports the following machines:
IBM (with support for MDA,CGA and EGA)
Sinclair Spectrum 48k/128k
Amstrad CPC range
Commodore 64 (and 128 in 64 mode)
MSX computers with at least 64K of RAM
Atari ST range
Commodore Amiga range
Amstrad PCW 8000/9000 Series

 DAAD can be divided into five main functional areas thus:

1/ The Source
 The source (.SCE files) are a collection of tables, which
 contain all the information to define an adventure game. They
 are in the format of an ASCII Text file.

2/ The Compiler
 This program is provided for the development machine only.
 The Compiler checks the source file for errors and converts it
 into a DAAD database for the specified machine (.DDB file)
 which the Interpreters can understand.

3/ The Interpreters
 These are the real heart of DAAD. There is an interpreter for
 each computer supported on the DAAD system. It runs the data
 in the database using its collection of routines to carry out
 the tasks needed by adventure games. It provides the machine
 independent aspect of DAAD.

4/ The Graphics Editors
 There are two types of graphic editors:
 a) Drawstring
 These use a form of drawing known as PLOT,LINE and FILL.
 Which allow very complex graphics to be drawn using very
 little memory. This is used for 8 bit computers. Note
 that there are graphics editors for each machine except
 MSX, as MSX can use the Spectrum graphics almost
 unchanged.
 b) Image
 These use graphics drawn with an art package (possible
 digitised), providing the necessary functions to assemble
 pictures into a graphics database for the Interpreters.
 This system is used on 16 bit computers. These can be
 produced with any art package required, but DEGAS PI1 on
 ST is the standard file format accepted by the programs.

5/ The Utilities & Communications
 These are a collection of programs provided, usually on the
 development machine and where needed on the target, to allow
 the conversion and sending of data, between machines

The main cycle of developing a text game with DAAD can be
visualised as follows:

 Start
 |
 Game Idea!
 _______________|
 | |
 | Edit .SCE files
 | using a text editor
 | |
 | Compile to .DDB
 | |
 |___No___ Test Play
 using INTS/ED
 Does it work?
 |
 | Yes
 |
 Compile .DDB for
 each machine
 |
 Send to each
 machine
 |
 Done

The graphics follow a slightly different process. They are split
into the two groups as mentioned above:

The routes for graphics, following the arrows from source machine
to object, are normally:-

 ST ------ > Amiga
 |
 |EGA or CGA
 |
 \/ CGA
 PC < ------ CPC
 PCW <----- CGA old _
 old /|

 Spectrum ---- > MSX

 \|
 -
 CBM 64

The two halves of a graphics database and a text database are
combined on the object machine. Although in the case of the 16Bit
machines where the disk is used to hold the graphics the files
remain seperate.

 Section 2 - Disk Contents

The disks supplied are as follows and of course you should make
copies and store the originals in a safe place. You will also
find it helpful to copy some files to working disks (or install
the entire system on a hard disk) for each game, this is
discussed at the end of this section.

PC (360K, 5.25 inch)

Disk 1 - Developer

This contains the major files to allow development work to be
carried out on the PC.

DC EXE The Compiler
DMG EXE PC EGA/CGA graphics manager - note that this has
 now been superceeded by the ST DMG. This remains
 to allow PCW support. It will be dropped in
 later releases.
OBJ (dir) Contains the object files to make the various
 types of DAAD interpreter.
BLANK SCE The standard empty database
BLANK DDB And a compiled version
SYMBOLS SCE A #include file to define common system symbols
SYMBOLS ASM A file to define symbols for Assembler use
SYMBOLS Z80 Extra symbols specific to the Z80
SYMBOLS 652 And those for the 6502 processor
MACROS Z80 Definition of MACROS for an assembler EXTERN
EXTERN ASM A MASM format source file, the mimimum 8086 ext.
CHARS ASM A MASM file containing NOOFPARTS, last in link

Disk 2 - Utilities

DAAD is supplied with a large range of utilities to carry out a
range of tasks. The sub directories on this disk reflect that
purpose.

GRAPHICS (dir) Utilities related to graphics work.
DRAW (dir) Those that relate to 'drawstring' machines.
 DSC COM Spectrum -> CBM graphics converter
 DSM COM Spectrum -> MSX graphics converter
 DSA COM Spectrum -> CPC graphics converter
 DCA COM Compress Amstrad Graphics (for old databases)
 DCS COM Compress Spectum Graphics (old databases)
 n.b. DCA & DSA are now incorporated in the DG programs. They
 are included to allow any pictures or databases drawn with
 old versions to be compressed.
PIXELS (dir) For the image machines (PC/ST/AMIGA/PCW)
 CACGA COM Convert CPC Mode 2 to CGA screen image
 CSTEGA EXE Convert/Display ST .PI1 to/on EGA mode 13
 CSTVGA EXE Convert/Display ST .PI1 to/on VGA mode 13
 CSTA COM Convert ST DEGAS (PI1) to CPC Mode 2

 CSTAM EXE Convert ST DEGAS (PI1) to Amiga bitmap
 CSTS EXE Convert ST DEGAS (PI1) to Spectrum
 CST3PCW EXE Convert ST DEGAS HiRes (PI3) to PCW
 CST1PCW EXE Convert ST DEGAS LoRes (PI1) to PCW
 n.b. A CSTCGA is in preparation, but CSTA and CACGA together
 can be used to convert an ST .PI1 to CGA screen!

COMMS (dir) Programs to send and receive files.
 XMP EXE XModem+ comms using RTS/CTS (Spectrum mainly)
 GOCBM COM Send files to CBM (needs special receiver)
 PPM COM Send and play games using PDS on MSX
 AAH COM Add Amstrad Header to a file
 ASH COM Add Spectrum +3 Header to a file
 RAAH COM Remove Amstrad Header from a file
 RASH COM Remove Spectrum +3 Header from a file
For communication with Atari, Amiga and CPC you use commercial or
PD comms packages

SQUEEZE (dir) Compression related programs
 FINDTOK EXE Analise a FINDTOK file for common tokens

RECOVER (dir) Help when you trash your source file
 LOOK COM Allow text part of a .DDB file to be examined.

The remaining directories contain utilities which have no direct
use but may prove useful sometime.

PRINT (dir) Dealing with the printer
 SPP COM Sets the printer to IBM mode by software
WP (dir) For wordprocessing use
 STRIP COM Removes any spaces from the end of a line
 ASC1ST COM Converts the major part of 1st word text to ASCII
ASM (dir)
 MHEX COM Make a HEX file from data
 GENTASM COM Convert HISOFT GENS format to 2500AD.

SPECTRUM (DISCiPLE 800K, 3.5 inch/Spectrum +3 3")

XM LOAD d1"xm" will start the XModem+ comms program (not+3)
DG LOAD d1"dg" will start the Spectrum graphics editor
DS48GE the graphics editor
DRE LOAD d1"dre" allows an English game to be run
DRS LOAD d1"drs" allows a Spanish game to be run.
DS48IS Spanish interpreter
DS48IE English interpreter
n.b. No special provision is made for the +3 at the moment. The
system is provided on both formats for mastering purposes.

CBM 64 (160K, 5.25 inch)

DG LOAD "dg",8,1 starts the CBM graphics editor.
DR LOAD "dr",8,1 will start the parallel recieve prog
SDI The Spanish interpreter

EDI The English interpreter
LS1 are the loaders to load a Spanish game called PART1/2
LS2

AMSTRAD CPC 464/6128 (160K, 3 inch)

Side 1 - Use under CPM (V3 on 6128 is recommended, although 2.2
should work)

DCPCIS Z80 The Spanish interpreter
DCPCIE Z80 The English interpreter
MCRF COM Make an AMSDOS 'RUN' program
UKM7AMS COM A public domain MODEM7 installed for CPC RS232
P11CPM3 EMS Patched version of CPM3 to allow Modem7.

Side 2 - For AMSDOS

DG BIN The CPC graphics editor. (RUN "dg from AMSDOS)
BLANK BIN empty graphics file for above

ST (720K, 3.5 inch)

SDIn PRG The Spanish interpreter (filename of PART1-n)
EDIn PRG English version of the above
Copies are also supplied with 'L' after the no of parts. These
only allow the game to be run in LoRes.
DMG PRG Graphics file manager
DMG RSC and its resource file

AMIGA (800K, 3.5 inch)

SDIn The Spanish interpreter (filename fixed at PARTn)
EDIn English version of the above

VT100 A public domain comms program
There is no graphics editor as the Amiga merely uses the ST file.

PCW (160K, 3")

DPCWIS Z80 The Spanish interpreter
DPCWIE Z80 The English interpreter

Other Programs/Hardware

In addition to the programs supplied you will need or are
advised to obtain some of the following programs which will make
life easier.

QEDIT PC - Shareware Text editor (very good)

PROCOMM PC - Shareware comms program
3.5" DRIVE PC - Simple transfer to ST (recommended)

VT100 AMIGA - A comms program (included on DAAD disc as PD)
DOS2DOS AMIGA - Load and Save ST/IBM files on Amiga (better)

FLASH ST - Comms program (any one will do actually)
5.25 DRIVE ST - for transfer to PC (3.5" for PC is better)

FASTHACK CBM64 - High speed disk and file copier

In fact a 720K external 3.5" for the PC will make transfer
simpler than a comms program to both ST and AMIGA (if you have
DOS2DOS)! You will find that an ST will happily read AND write
disks formatted to 720K on a PC. The reverse is not true, so you
should make a habit of using PC format disks if you need to
transfer the data on them between the machines.

Development Installation on a PC Hard Disc

The simplest method of using the DAAD package is to create a
directory \DAAD and copy the contents of Discs 1 & 2 into it. You
may find it useful to create and OBJ directory for the .OBJ
files.

LINK the development interpreter for the graphics method you are
going to use (see PC section of the interpreter details)

Add the directory to your path (PATH command of MSDOS).

Then create a directory for each game into which you place your
source files.

 Section 3 - A Worked Example

Here is a summary of the major points needed to produce a game
(using the default of the Spanish language).

1/ To start editing your source file (called TUTOR) assuming you
have QEDIT installed for your machine:

 QE TUTOR.SCE

Now we have a blank file to start work on. To make things easier
there is a file on disc which contains the minumum data needed in
a file plus some useful words in the vocab etc. This is called
BLANK.SCE, this can now be read in to become part of our file
(CTRL K & R on QEDIT). Once you have typed in your game, you will
need to save it and exit (CTRL K & X) to the command line to test
it out.

2/ Now we need to make a file the computer can understand. Here
we use a compiler to make a copy of your SCE file in the form of
a DDB file.

 DC TUTOR

Will do the job and create a TUTOR.DDB file.

3/ To actually play this you use an interpreter which reads the
information in the DDB file to actually make the game

 INTSD TUTOR
or INTSDM TUTOR

Will allow you to play the game. If you find a problem then go
back to edit the file as at step 1, but you will not need to load
the BLANK file again!

4/ At this point you can start drawing your graphics. You will
need to draw one set on the Spectrum which will later be
converted to the MSX,CBM and CPC. The other set are drawn on the
ST (well anywhere actually as long as they are finally saved from
DEGAS in uncompressed 16 colour mode - .PI1 extension).

5/ Making the running copy for each machine:

ST

Compile a version of your source without debug information and
compressed called PART1.DDB using compiler option -m5. Transfer
it to the ST - Either using comms programs (such as
FLASH/PROCOMM), or an external drive.

Draw you graphics and save in PI1 format. Use DMG to make a
graphics file suitable for the game, called PART1.DAT.

Put the .DDB and .DAT files on the same disk along with a 6x8
character set file - with extension .CH0. See the section on
character sets for details of redefining the set. For text mode
you need a special 8x8 character set. A duplicate of the CH0 file
called .CHR will work if you don't mind the letters spaced out a
bit. Then put SDI.PRG on the disk and rename it as required.

A standard DEGAS PI1 file renamed to PART1.SCR can be included on
the disk as a backdrop during loading if required.

The game is started by clicking on the .PRG file as normal on an
ST.

AMIGA

Make a copy of the Minmum OS disk. Put all files on this disk.

Compile a version of your source without debug information and
compressed called PART1.DDB using option -m6. Transfer it to the
AMIGA (using VT100/PROCOMM or DOS2DOS from a PC disc in the
external drive). Note that if there are no conditional
differences between ST and AMIGA you can use the ST .DDB file as
it will work perfectly.

Transfer the .DAT and .CH0 files from the ST. Rename the .CH0
file to .CHR.

Use the DSTAM utility on ST to load the .PI1 backdrop picture and
save a BIT file. Transfer it to the Amiga. Rename it to be
PART1.SCR

Copy SDI onto the Working disk and call it AD. Or if you change
the name in the "s/startup-sequence" file you can call it
anything you like. You should also make an Icon (tool type) with
the same name and copy it onto the disk.

The disk is now autoboot, or if you added an icon, clickable from
workbench.

PC

Compile a version of your source without debug information and
compressed called PART1.DDB

EGA Using old system DMG:-

The graphics under DEGAS on the ST must be amended to use the EGA
16 colour fixed pallette.

Send them to the PC using a comms package, or copy from external
3.5" drive.

Use DMG on the PC to make a file called PART1.EGA consisting of
these pictures.

Make an INTS.EXE file for the correct number of parts and place
it (renamed as you like) along with the .DDB file, the .EGA file
and a .CHR file on the same disk.

CGA Old system:-

The graphics can come from either ST or CPC. Use DMG to make a
file called PART1.CGA.

Just putting the .CGA file on the EGA disk will automatically
select the correct file according to fitted graphic card. But if
you wish to make a special CGA version, follow the above steps
but use the INTSCGA.EXE file as the interpreter.

Using new system multi-machine graphics (ST version of DMG):-

You should have EGA and CGA versions of the palette loaded for
each picture in DMG on the ST. Any buffer flags set and a buffer
sort carried out. It doesn't matter if you have compressed yet
but conversion will be faster if you have.

Use the Make IBM option to write a PARTx.IBM file to a disk. Send
it to the IBM and rename it to be PARTx.DAT

Make an INTSM.EXE file for the correct number of parts and place
it (renamed as you like) along with the .DDB and .CHR files on
the same disk.

Send a DEGAS PI1 file with a full colour palette to PC - this
will normally be the ST loading screen. Use CSTVGA to make a VGA
file. It will have an extension .V13 so rename it to be .VGS for
a loading screen.

For both systems:-

Send a DEGAS PI1 file using only the EGA 16 colour palette to PC.
Use CSTEGA to make an EGA file. It will have an extension .E13 so
rename it to be .EGS for a loading screen.

The CGA loading screen is made using the CACGA program and is
given an extension of CGS. If you want it to come from ST use the
CSTA program to convert to Amstrad first! There will hopefully be
a CSTCGA program in the future.

CPC

Compile a version of your source without debug information and
compressed called xxx.DDB (etc) using option -m3c. Send it to the
Amstrad using PROCOMM and UKM7AMS.

Send a copy of the Spectrum graphics file to IBM using XM on
Spectrum and XMP on the IBM - calling it yyy.SDG. Or
PROCOMM/UKM7AMS from CPC having saved the file on a CPC DATA
format disc from the +3. Don't forget to remove the +3 header.

Use DSA to make a file for Amstrad (which will be called
yyy.BIN). Send it to the Amstrad using PROCOMM and UKM7AMS.

Use the DG editor to clean up the pictures - you will normally
have to use the -fs option on DSA to delete fills and shades and
then re-insert them manually in DG. Note that the character set
is actually 8x8 on CPC and you may like to design a special one
for it which can then be sent to the CBM and the ST (for text
mode).

From CPM use MCRF to make a final run file for AMSDOS. This is
described in the section on this program.

Spectrum

Compile a version of your source without debug information and
compressed called xxx.DDB (etc) using option -m1.

DISCiPLE:-

Send the database to the Spectrum using XMP on the PC and XM on
the Spectrum.

As long as your graphics and database have the same name (the
graphics will have a + sign in character position 10), you can
use LOAD d1"drs" to play the game.

+3:-

Use ASH to add a Spectrum header to the .DDB file, rename it to
PARTx.DDB and send it to the CPC using Procomm & UKM7AMS. The +3
will accept a CPC Data format disc quite happily!

Save the graphics file from DG onto the disc, and a copy of the
DS48Il interpreter. A small BASIC loader is provided on the
release disc called "DRS" ("DRE" for English), but you may like
to load all files into memory and save a block.

CBM

Compile a version of your source without debug information and
compressed called PART1.DDB (etc) using option -m2c.

Send the database to the CBM using DR on the CBM and GOCBM on the
PC. You must give the load address as 0x3880.

Send a copy of the Spectrum graphics file to IBM using XM on
Spectrum and XMP on the IBM (calling it PARTx.SDG). Or see note

about +3 under CPC.

Use DSC to make a file for CBM (which will be called yyy.CDG).
Send the file to the CBM using DR on the CBM and GOCBM on the PC.
You must give the load address as that given as the lowest
address by DSC.

Use the DG editor to clean up the pictures - you should need to
do very little here if you have been careful in drawing the
pictures on the Spectrum. The character set is actually 8x8 on
CBM and you may like to design a special one for it (and CPC/ST
Text mode).

Copy the LS1 file to your work disk (FAST HACK EM) and rename it
(using OPEN 15,8,15,"R0:newname=LS1").

MSX

Compile a version of your source without debug information and
compressed called PARTx.DDB (etc) using option -m4.

Send a copy of the Spectrum graphics file to IBM using XM on
Spectrum and XMP on the IBM (calling it PARTx.SDG).

Use DSM to make a file for MSX (which will be called PARTx.MDG).

Ensure a copy of the relevent interpreter is in the directory
renamed to be DMSXI.Z80.

Load a copy of PDS56000 on your MSX machine (HitBit only at the
moment) Use PPL PARTx to send and start the game.

N.B. the PC disk is your master, as there is no simple way to
save files to cassette on MSX.

PCW

Compile a version of your source without debug information and
compressed using option -m7c called PARTExxx.DDB where XXX is the
part number (001,002 etc lwading zeros are required). Send this
using PROCOMM/UKM7AMS to a CPC DATA format disk.

You have to make a CGA graphics file using DMG on the PC. Then
use the write PCW (W) option to make a file DMG.PCW. Rename this
file to PARTExxx.DAT and send to the disc. We have to change DMG
Atari to provide the write facility...

Send a CHR (8x8 characters) in Amstrad format to the PCW called
PARTExxx.CHR. The .CHR set used for the ST will serve for this
purpose.

The loading screen is made using CST1PCW, and is called
PARTE001.SCR (always) this comes from a 4 colour CGA ST screen.

(n.b. This will not change when we switch to new style graphics).

Finally place a copy of DPCWIS.Z80 on the disk renamed as you
like.

 Section 4 - The Interpreter

4.0 Overview

The following description of the interpreter applies to all
versions. Machine specific things are described under the section
for that machine.

Initialise

The system initialise is carried out only once. All flags and
object positions are cleared. The screen is cleared (although
this may change on 8 bit to provide loading screen maintenance).
Note that clearing the flags has the effect that the game always
starts at location zero. This is because Player, the current
location of the player, is now zero.

Main Loop

The program makes a call to process 0. On exit from that table a
return is made to the operating system or to restart the game -
with only a partial initialise.

On machines which feature the autoload facility a new database
part may be specified as part of the EXIT action. This will cause
that part to be loaded and the main loop to be restarted without
any initialisation taking place allowing the game state to be
passed onto another database.

Search Process Table 0

Process table 0 will normally be the main loop of the
interpreter, although there is no reason why it can't just carry
out some actions and return to the O/S.

Flowchart 1 and the next section describe the scanning of a
process table, this applies to Process 0 as it operates just like
any other table. The exception being that a DONE or falling off
the end will cause a return to the O/S rather than a calling
table.

The source file BLANK.SCE gives an example of a minimum game
written under DAAD.

 #Flowchart 1#
 Start
 |
 |
 |
 No More
 -------------------- Entries? <----------
 | | |
 | | Yes |
 | | |
 | | |
 | | |
 | | |
 | Verb No |
 | Match?----------->|
 | | |
 | | Yes |
 | | |
 | Noun No |
 | Match?----------->|
 | | |
 | | Yes |
 | | |
 | | |
 | More No |
 | 1----> CondActs---------->|<-------
 | ? |
 | | Yes |
 | | |
 | | |
 | | |
 | No | Yes |
 | --- Condition ----------- |
 | | ? | |
 | | | |
 | | | | No
 | Do Action Succeed?----
 | | |
 | | | Yes
 | | |
 | | \/
 | | Yes 1
 | RESTART? ----> Start
 | |
 | | No
 | |
 | |
 | Yes | No
 --------------EXIT?--------> 1
 |
 |
 |
 End

Scan a Process Table

Essentially DAAD will look at each entry in the table until it is
exhausted - the table of entries, not DAAD! Assuming there is an
entry, it will ensure the Verb and Noun match those of the
current Logical Sentence (LS) - This will be set up by a PARSE
statement somewhere in the main loop for a traditional text game.

The use of the word "_", as either the Verb or the Noun, will
cause a match with any word in that part of the logical sentence.
Thus an entry in a table of "_ _", will cause a trigger of the
entry no matter what the LS. This will be the normal entry in
Process 0 as it will be very unlikely that a valid LS is present
or meaningful for the main loop of the game.

DAAD will then look at each CondAct in turn; if it is a
condition, which succeeds, then DAAD will look at the next
condact. Otherwise it will drop out of the current condact list
and look at the next entry, if present, in the table. If it is an
action it will be carried out. Actions can be divided into five
main groups:

1/ RESTART; which will completely exit the execution of
#all#
 tables (i.e. even if in a 10th level sub-process) and jump to
 the start of Process 0.

2/ END/EXIT; (a group on their own) which will completely exit
 the execution of all tables and jump to initialise a new game
 or exit to the operating system.

3/ Exit; any action which will stop processing of the current
 table and exit to the calling table. e.g. DONE etc.

4/ Conditional Exit; any action which will stop processing of the
 current table and exit to the calling table if it fails to do
 its required function. e.g. GET, PUTIN etc. Otherwise it will
 continue with the next CondAct.

5/ Normal; any action which carries out its function, and allows
 DAAD to continue looking at the next CondAct in the current
 entry. e.g. COPYFF, PLUS etc

Note: Several CondActs in DAAD behave differently to those with
the same name in QUILL/PAW, so ensure you check in this manual
before using them. QUIT is an example, in DAAD it is a true
condition.

4.1.0. CondActs

There now follows a detailed description of each CondAct that may
be included in an entry. They are divided into groups according
to the subject they deal with in DAAD; such as flags, objects etc
and give some hints as to a possible use.

For those used to the PAW systems. Be careful! Several actions
have been removed, while others have changed in function. Make
sure you check on their function within DAAD. E.g. TURN & SCORE
are deleted - they must now be soft coded. Also TIMEOUT, PROMPT
and GRAPHIC are gone as 'HASAT TIMEOUT', 'LET Prompt x' and 'LET
GFlags expression' will do the same.

Several abbreviations are used in the descriptions as follows;

locno. is a valid location number.

locno+ is a valid location number or; 252 or "_" (meaning not-
created), 253 or "WORN", 254 or "CARRIED" and 255 or "HERE"
(which is converted into the current location of the player).

mesno. is a valid message.

sysno. is a valid system message.

flagno. is any flag (0 to 255).

procno. is a valid sub-process number.

word is word of the required type, which is present in the
vocabulary, or "_" which ensures no-word - not an anymatch as
normal.

value is a value from 0 to 255.

4.1.1. Indirection

The first parameter on the majority of actions can use
indirection. This is indicated by placing square brackets ([])
around the first parameter of a CondAct. This will cause not the
number itself to be used, but the contents of the flag
corresponding to that number. Only the first parameter may be
indirected but this provides a powerful facility. Although not
all commands can indirect, most that have a flag, object or
number as the first parameter can be indirected.

E.g. 'MESSAGE [100]' will print the message number that is given
by the value in Flag 100 - as opposed to 'MESSAGE 100' which
would print message 100!

4.1.2 Conditions

There are four conditions which deal with testing the location of
the player as follows;

AT locno.

Succeeds if the current location is the same as locno.

NOTAT locno.

Succeeds if the current location is different to locno.

ATGT locno.

Succeeds if the current location is greater than locno.

ATLT locno.

Succeeds if the current location is less than locno.

There are eight conditions which deal with the current location
of an object;

PRESENT objno.

Succeeds if Object objno. is carried, worn or at the current
location.

ABSENT objno.

Succeeds if Object objno. is not carried, not worn and not at the
current location.

WORN objno.

Succeeds if object objno. is worn

NOTWORN objno.

Succeeds if Object objno. is not worn.

CARRIED objno.

Succeeds if Object objno. is carried.

NOTCARR objno.

Succeeds if Object objno. is not carried.

ISAT objno. locno+

Succeeds if Object objno. is at Location locno.

ISNOTAT objno. locno+

Succeeds if Object objno. is not at Location locno.

There are ten conditions which deal with the value and comparison
of flags;

ZERO flagno.

Succeeds if Flag flagno. is set to zero.

NOTZERO flagno.

Succeeds if Flag flagno. is not set to zero.

EQ flagno. value

Succeeds if Flag flagno. is equal to value.

NOTEQ flagno. value

Succeeds if Flag flagno. is not equal to value.

GT flagno. value

Succeeds if Flag flagno. is greater than value.

LT flagno. value

Succeeds if Flag flagno. is set to less than value.

SAME flagno 1 flagno 2

Succeeds if Flag flagno 1 has the same value as Flag flagno 2 .

NOTSAME flagno 1 flagno 2

Succeeds if Flag flagno 1 does not have the same value as
Flag flagno 2 .

BIGGER flagno 1 flagno 2

Will be true if flagno 1 is larger than flagno 2

SMALLER flagno 1 flagno 2

The reverse of above - it isn't actualy needed as reversing the
parameters of BIGGER would do the same, but it may make programs

more readable and indirection can be used with 'either'
flag by using the appropriate condition.

There are five conditions to check for an extended logical
sentence. It is best to use these conditions only if the specific
word (or absence of word using "_") is needed to differentiate a
situation. This allows greater flexibility in the commands
understood by the entry.

ADJECT1 word

Succeeds if the first noun's adjective in the current LS is word.

ADVERB word

Succeeds if the adverb in the current LS is word.

PREP word

Succeeds if the preposition in the current LS is word.

NOUN2 word

Succeeds if the second noun in the current LS is word.

ADJECT2 word

Succeeds if the second noun's adjective in the current LS is
word.

The following condition is for random occurrences. You could use
it to provide a chance of a tree falling on the player during a
lightning strike or a bridge collapsing etc. Do not abuse this
facility, always allow a player a way of preventing the problem;
such as rubber boots for the lightning, or similar.

CHANCE percent

Succeeds if percent is less than or equal to a random number in
the range 1-100 (inclusive). Thus a CHANCE 50 condition would
allow PAW to look at the next CondAct only if the random number
generated was between 1 and 50, a 50% chance of success.

Two conditions provide a boolean TRUE/FALSE test for Sub_process
calls:-

ISDONE

Succeeds if the last table ended by exiting after executing at
least one Action. This is useful to test for a single

succeed/fail boolean value from a Sub-Process. A DONE action will
cause the 'done' condition, as will any condact causing exit, or
falling off the end of the table - assuming at least one CondAct
(other than NOTDONE) was done.
See also ISNDONE and NOTDONE actions.

ISNDONE

Succeeds if the last table ended without doing anything or with a
NOTDONE action.

Object attributes are dealt with by two conditions also:-

HASAT/HASNAT value

Checks the attribute specified by value. 0-15 are the object
attributes for the current object. There are also several
attribute numbers specified as symbols in SYMBOLS.SCE which check
certain parts of the DAAD system flags:-

Symbol Flag Att No. Description
WEARABLE Flag 57 - Bit7 23 Current object is wearable
CONTAINER Flag 56 - Bit7 31 Current object is a container
LISTED Flag 53 - Bit7 55 If objects listed by LISTOBJ
TIMEOUT Flag 49 - Bit7 87 If Timeout last frame
GMODE Flag 29 - Bit7 247 Graphics available
MOUSE Flag 29 - Bit0 240 Mouse available (not supported
 on all machines at the moment)

The option bits can be set/tested using the defined values given
as attributes and bit values in SYMBOLS.SCE

For example the CPC magic draw option which loads the palette
colours after drawing using black ink on black paper can be
enabled with:-

 HASNAT GA_MDRW ; If we don't have magic
 draw

 PLUS GFlags GO_MDRW

Note; Symbols in the format GA_xxx are the attribute test values
for HASAT/HASNAT testing, while GO_xxx is the number used to
set/clear (using PLUS/MINUS) the bit.

As a further example; The TIMEOUT condition of PAW is implimented
in DAAD by:

 HASAT TIMEOUT

this also allows a 'NOTTIMEOUT' condition to be created
using HASNAT!

You can of course assign your own values to parts of a flag and

test them simply with thes HASAT/HASNAT conditions. They are a
true general purpose bit tester for the first 64 flags.

Interaction with the player is carried out by two conditions:-

INKEY

Is a condition which will be satisfied if the player is pressing
a key. In 16Bit machines Flags Key1 and Key2 (60 & 61) will be a
standard IBM ASCII code pair. On 8 bit only Key1 will be valid,
and the code will be machine specific.

QUIT

SM12 ("Are you sure?") is printed and the input routine
called. Will succeed if the player replies with a word which
starts with the first letter of SM30 ("Y") to the prompt. If not
then the remainder of the entry is discarded and the next entry
is carried out.

 4.1.3 Actions

There are twenty one actions to deal with the manipulation of
object positions;

GET objno.

If Object objno. is worn or carried, SM25 ("I already have the
_.") is printed and actions NEWTEXT & DONE are performed.

If Object objno. is not at the current location, SM26 ("There
isn't one of those here.") is printed and actions NEWTEXT & DONE
are performed.

If the total weight of the objects carried and worn by the player
plus Object objno. would exceed the maximum conveyable weight
(Flag 52) then SM43 ("The _ weighs too much for me.") is printed
and actions NEWTEXT & DONE are performed.

If the maximum number of objects is being carried (Flag 1 is
greater than, or the same as, Flag 37), SM27 ("I can't carry any
more things.") is printed and actions NEWTEXT & DONE are
performed. In addition any current DOALL loop is cancelled.

Otherwise the position of Object objno. is changed to carried,
Flag 1 is incremented and SM36 ("I now have the _.") is printed.

DROP objno.

If Object objno. is worn then SM24 ("I can't. I'm wearing the
_.") is printed and actions NEWTEXT & DONE are performed.

If Object objno. is at the current location (but neither worn nor
carried), SM49 ("I don't have the _.") is printed and actions
NEWTEXT & DONE are performed.

If Object objno. is not at the current location then SM28 ("I
don't have one of those.") is printed and actions NEWTEXT & DONE
are performed.

Otherwise the position of Object objno. is changed to the current
location, Flag 1 is decremented and SM39 ("I've dropped the _.")
is printed.

WEAR objno.

If Object objno. is at the current location (but not carried or
worn) SM49 ("I don't have the _.") is printed and actions NEWTEXT
& DONE are performed.

If Object objno. is worn, SM29 ("I'm already wearing the _.") is
printed and actions NEWTEXT & DONE are performed.

If Object objno. is not carried, SM28 ("I don't have one of
those.") is printed and actions NEWTEXT & DONE are performed.

If Object objno. is not wearable (as specified in the object
definition section) then SM40 ("I can't wear the _.") is printed
and actions NEWTEXT & DONE are performed.

Otherwise the position of Object objno. is changed to worn, Flag
1 is decremented and SM37 ("I'm now wearing the _.") is printed.

REMOVE objno.

If Object objno. is carried or at the current location (but not
worn) then SM50 ("I'm not wearing the _.") is printed and actions
NEWTEXT & DONE are performed.

If Object objno. is not at the current location, SM23 ("I'm not
wearing one of those.") is printed and actions NEWTEXT & DONE are
performed.

If Object objno. is not wearable (and thus removable) then SM41
("I can't remove the _.") is printed and actions NEWTEXT & DONE
are performed.

If the maximum number of objects is being carried (Flag 1 is
greater than, or the same as, Flag 37), SM42 ("I can't remove the
_. My hands are full.") is printed and actions NEWTEXT & DONE
are performed.

Otherwise the position of Object objno. is changed to carried.
Flag 1 is incremented and SM38 ("I've removed the _.") printed.

CREATE objno.

The position of Object objno. is changed to the current location
and Flag 1 is decremented if the object was carried.

DESTROY objno.

The position of Object objno. is changed to not-created and Flag
1 is decremented if the object was carried.

SWAP objno 1 objno 2

The positions of the two objects are exchanged. Flag 1 is not
adjusted. The currently referenced object is set to be Object
objno 2 .

PLACE objno. locno+

The position of Object objno. is changed to Location locno. Flag
1 is decremented if the object was carried. It is incremented if
the object is placed at location 254 (carried).

PUTO locno+

The position of the currently referenced object (i.e. that object
whose number is given in flag 51), is changed to be Location
locno. Flag 54 remains its old location. Flag 1 is decremented if
the object was carried. It is incremented if the object is placed
at location 254 (carried).

PUTIN objno. locno.

If Object objno. is worn then SM24 ("I can't. I'm wearing the
_.") is printed and actions NEWTEXT & DONE are performed.

If Object objno. is at the current location (but neither worn nor
carried), SM49 ("I don't have the _.") is printed and actions
NEWTEXT & DONE are performed.

If Object objno. is not at the current location, but not carried,
then SM28 ("I don't have one of those.") is printed and actions
NEWTEXT & DONE are performed.

Otherwise the position of Object objno. is changed to Location
locno. Flag 1 is decremented and SM44 ("The _ is in the"), a
description of Object locno. and SM51 (".") is printed.

TAKEOUT objno. locno.

If Object objno. is worn or carried, SM25 ("I already have the
_.") is printed and actions NEWTEXT & DONE are performed.

If Object objno. is at the current location, SM45 ("The _ isn't
in the"), a description of Object locno. and SM51 (".") is
printed and actions NEWTEXT & DONE are performed.

If Object objno. is not at the current location and not at
Location locno. then SM52 ("There isn't one of those in the"), a
description of Object locno. and SM51 (".") is printed and
actions NEWTEXT & DONE are performed.

If Object locno. is not carried or worn, and the total weight of
the objects carried and worn by the player plus Object objno.
would exceed the maximum conveyable weight (Flag 52) then SM43
("The _ weighs too much for me.") is printed and actions NEWTEXT
& DONE are performed.

If the maximum number of objects is being carried (Flag 1 is
greater than, or the same as, Flag 37), SM27 ("I can't carry any
more things.") is printed and actions NEWTEXT & DONE are
performed. In addition any current DOALL loop is cancelled.

Otherwise the position of Object objno. is changed to carried,
Flag 1 is incremented and SM36 ("I now have the _.") is printed.

Note: No check is made, by either PUTIN or TAKEOUT, that Object
locno. is actually present. This must be carried out by you if
required.

DROPALL

All objects which are carried or worn are created at the current
location (i.e. all objects are dropped) and Flag 1 is set to 0.
This is included for compatibility with older writing systems.
Note that a DOALL 254 will carry out a true DROP ALL, taking care
of any special actions included.

The next six actions are automatic versions of GET, DROP, WEAR,
REMOVE, PUTIN and TAKEOUT. They are automatic in that instead of
needing to specify the object number, they each convert
Noun(Adjective)1 into the currently referenced object - by
searching the the object definition section. The search is for an
object which is at one of several locations in descending order
of priority - see individual descriptions. This search against
priority allows PAW to 'know' which object is implied if more
than one object with the same Noun description (when the player
has not specified an adjective) exists; at the current location,
carried or worn - and in the container in the case of TAKEOUT.

AUTOG

A search for the object number represented by Noun(Adjective)1 is
made in the object definition section in order of location
priority; here, carried, worn. i.e. The player is more likely to
be trying to GET an object that is at the current location than
one that is carried or worn. If an object is found its number is
passed to the GET action. Otherwise if there is an object in
existence anywhere in the game or if Noun1 was not in the
vocabulary then SM26 ("There isn't one of those here.") is
printed. Else SM8 ("I can't do that.") is printed (i.e. It is not
a valid object but does exist in the game). Either way actions
NEWTEXT & DONE are performed

AUTOD

A search for the object number represented by Noun(Adjective)1 is
made in the object definition section in order of location
priority; carried, worn, here. i.e. The player is more likely to
be trying to DROP a carried object than one that is worn or here.
If an object is found its number is passed to the DROP action.
Otherwise if there is an object in existence anywhere in the game
or if Noun1 was not in the vocabulary then SM28 ("I don't have
one of those.") is printed. Else SM8 ("I can't do that.") is
printed (i.e. It is not a valid object but does exist in the
game). Either way actions NEWTEXT & DONE are performed

AUTOW

A search for the object number represented by Noun(Adjective)1 is
made in the object definition section in order of location
priority; carried, worn, here. i.e. The player is more likely to
be trying to WEAR a carried object than one that is worn or here.
If an object is found its number is passed to the WEAR action.
Otherwise if there is an object in existence anywhere in the game
or if Noun1 was not in the vocabulary then SM28 ("I don't have
one of those.") is printed. Else SM8 ("I can't do that.") is
printed (i.e. It is not a valid object but does exist in the
game). Either way actions NEWTEXT & DONE are performed

AUTOR

A search for the object number represented by Noun(Adjective)1 is
made in the object definition section in order of location
priority; worn, carried, here. i.e. The player is more likely to
be trying to REMOVE a worn object than one that is carried or
here. If an object is found its number is passed to the REMOVE
action. Otherwise if there is an object in existence anywhere in
the game or if Noun1 was not in the vocabulary then SM23 ("I'm
not wearing one of those.") is printed. Else SM8 ("I can't do
that.") is printed (i.e. It is not a valid object but does exist
in the game). Either way actions NEWTEXT & DONE are performed

AUTOP locno.

A search for the object number represented by Noun(Adjective)1 is
made in the object definition section in order of location
priority; carried, worn, here. i.e. The player is more likely to
be trying to PUT a carried object inside another than one that is
worn or here. If an object is found its number is passed to the
PUTIN action. Otherwise if there is an object in existence
anywhere in the game or if Noun1 was not in the vocabulary then
SM28 ("I don't have one of those.") is printed. Else SM8 ("I
can't do that.") is printed (i.e. It is not a valid object but
does exist in the game). Either way actions NEWTEXT & DONE are
performed

AUTOT locno.

A search for the object number represented by Noun(Adjective)1 is
made in the object definition section in order of location
priority; in container, carried, worn, here. i.e. The player is
more likely to be trying to get an object out of a container
which is actually in there than one that is carried, worn or
here. If an object is found its number is passed to the TAKEOUT
action. Otherwise if there is an object in existence anywhere in
the game or if Noun1 was not in the vocabulary then SM52 ("There
isn't one of those in the"), a description of Object locno. and
SM51 (".") is printed. Else SM8 ("I can't do that.") is printed
(i.e. It is not a valid object but does exist in the game).

Either way actions NEWTEXT & DONE are performed

Note: No check is made, by either AUTOP or AUTOT, that Object
locno. is actually present. This must be carried out by you - if
required.

COPYOO objno 1 objno 2

The position of Object objno 2 is set to be the same as
the
position of Object Objno 1 . The currently referenced object is
set
to be Object objno 2 .

RESET

This Action bears no resemblance to the one with the same name in
PAW. It has the pure function of placing all objects at the
position given in the Object start table. It also sets the
relevant flags dealing with no of objects carried etc.

There are five actions which allow various parameters of objects
to be; placed in flags, set from flags - for comparison or
manipulation.

COPYOF objno. flagno.

The position of Object objno. is copied into Flag flagno. This
could be used to examine the location of an object in a
comparison with another flag value. e.g.

 COPYOF 1 11
 SAME 11 38

could be used to check that object 1 was at the same location as
the player - although ISAT 1 255 would be better!

COPYFO flagno. objno.

The position of Object objno. is set to be the contents of Flag
flagno. An attempt to copy from a flag containing 255 will result
in a run time error. Setting an object to an invalid location
will still be accepted as it presents no danger to the operation
of PAW.

WHATO

A search for the object number represented by Noun(Adjective)1 is
made in the object definition section in order of location
priority; carried, worn, here. This is because it is assumed any
use of WHATO will be related to carried objects rather than any
that are worn or here. If an object is found its number is placed

in flag 51, along with the standard current object parameters in
flags 54-57. This allows you to create other auto actions (the
tutorial gives an example of this for dropping objects in the
tree).

SETCO objno.

Sets the currently referenced object to objno.

WEIGH objno. flagno.

The true weight of Object objno. is calculated (i.e. if it is a
container, any objects inside have their weight added - don't
forget that nested containers stop adding their contents after
ten levels) and the value is placed in Flag flagno. This will
have a maximum value of 255 which will not be exceeded. If Object
objno. is a container of zero weight, Flag flagno. will be
cleared as objects in zero weight containers, also weigh zero!

Now the actions to manipulate the flags;

SET flagno.

Flag flagno. is set to 255.

CLEAR flagno.

Flag flagno. is cleared to 0.

LET flagno. value

Flag flagno. is set to value.

PLUS flagno. value

Flag flagno. is increased by value. If the result exceeds 255
the flag is set to 255.

MINUS flagno. value

Flag flagno. is decreased by value. If the result is negative
the flag is set to 0.

ADD flagno 1 flagno 2

Flag flagno 2 has the contents of Flag flagno 1 added to it. If
the result exceeds 255 the flag is set to 255.

SUB flagno 1 flagno 2

Flag flagno 2 has the contents of Flag flagno 1 subtracted from
it. If the result is negative the flag is set to 0.

COPYFF flagno 1 flagno 2

The contents of Flag flagno 1 is copied to Flag flagno 2 .

COPYBF flagno1 flagno2

Same as COPYFF but the source and destination are reversed, so
that indirection can be used. This will hopefully be replaced by
a comprehensive system of dual parameter redirection for COPY
actions in the future.

RANDOM flagno.

Flag flagno. is set to a number from the Pseudo-random sequence
from 1 to 100. This could be useful to allow random decisions to
be made in a more flexible way than with the CHANCE condition.

MOVE flagno.

This is a very powerful action designed to manipulate PSI's. It
allows the current LS Verb to be used to scan the connections
section for the location given in Flag flagno. If the Verb is
found then Flag flagno. is changed to be the location number
associated with it, and the next condact is considered. If the
verb is not found, or the original location number was invalid,
then PAW considers the next entry in the table - if present. Thus
you could consider that PAW carries out the following imaginary
entries on exit from Response if no action has been done;

 _ _ MOVE 38 ;Attempt to move player
 DESC ;Describe his new loc.

 _ _ LT 33 14 ;Movement word?
 SYSMESS 7 ;"Can't go that way.."
 DONE

 _ _ SYSMESS 8 ;"I can't do that"

This feature could be used to provide characters with Random
movement in valid directions; by setting the LS Verb to a random
movement word and allowing MOVE to decide if the character can go
that way. Note that any special movements which are dealt with in
Response for the player, must be dealt with separately for a PSI
as well.

Actions to manipulate the flags dealing with the player;

GOTO locno.

Changes the current location to locno. This effectively sets flag
38 to the value locno.

WEIGHT flagno.

Calculates the true weight of all objects carried and worn by the
player (i.e. any containers will have the weight of their
contents added up to a maximum of 255), this value is then placed
in Flag flagno. This would be useful to ensure the player was
not carrying too much weight to cross a bridge without it
collapsing etc.

ABILITY value 1 value 2

This sets Flag 37, the maximum number of objects conveyable, to
value 1 and Flag 52, the maximum weight of objects the player
may carry and wear at any one time (or their strength), to be
value 2 .
No checks are made to ensure that the player is not already
carrying more than the maximum. GET and so on, which check the
values, will still work correctly and prevent the player carrying
any more objects, even if you set the value lower than that which
is already carried!

There are three actions which deal with the manipulation of the
flags for screen mode, format etc;

MODE option

Allows the current window to have its operation flags changed.
In order to calculate the number to use for the option just add
the numbers shown next to each item to achieve the required
combination;

 1 - Use the upper character set. (A permanent ^G)
 2 - SM32 ("More...") will not appear when the window fills.

e.g. MODE 3 stops the 'More...' prompt and causes all characters
to be translated to the 128-256 range.

INPUT stream option

The 'stream' parameter will set the bulk of input to come from
the given window/stream. A value of 0 for 'stream' will not use
the graphics stream as might be expected, but instead causes
input to come from the current stream when the input occurs.

Options:
1 - Clear window after input.
2 - Reprint input line in current stream when complete.
4 - Reprint current text of input after a timeout.

TIME duration option

Allows input to be set to 'timeout' after a specific duration in

1 second intervals, i.e. the Process 2 table will be called again
if the player types nothing for the specified period. This
action alters flags 48 & 49. 'option' allows this to also occur
on ANYKEY and the "More..." prompt. In order to calculate the
number to use for the option just add the numbers shown next to
each item to achieve the required combination;

 1 - While waiting for first character of Input only.
 2 - While waiting for the key on the "More..." prompt.
 4 - While waiting for the key on the ANYKEY action.

e.g. TIME 5 6 (option = 2+4) will allow 5 seconds of inactivity
on behalf of the player on input, ANYKEY or "More..." and between
each key press. Whereas TIME 5 3 (option = 1+2) allows it only on
the first character of input and on "More...".

TIME 0 0 will stop timeouts (default).

Actions to deal with screen output and control;

WINDOW window

Selects window (0-7) as current print output stream.

WINAT line col

Sets current window to start at given line and column. Clipping
height and width to fit available screen.

WINSIZE height width

Sets current window size to given height and width. Clipping as
needed to fit available screen.

CENTRE

Will ensure the current window is centred for the current column
width of the screen. (Does not affect line position).

CLS

Clears the current window.

SAVEAT
BACKAT

Save and Restore print position for current window. This allows
you to maintain the print position for example while printing
elsewhere in the window. You should consider using a seperate
window for most tasks. This may find use in the creation of a
new input line or in animation sequences...

PAPER colour
INK colour

Sets current window colours acording to the lookup table given in
the graphics editors, or as a pallette number for machines with a
palette.

BORDER colour

Sets main screen border colour - this is machine specific.

PRINTAT line col

Sets current print position to given point if in current window.
If not then print position becomes top left of window.

TAB col

Sets current print position to given column on current line.

SPACE

Will simply print a space to the current output stream. Shorter
than MES Space!

NEWLINE

Prints a carriage return/line feed.

MES mesno.

Prints Message mesno.

MESSAGE mesno.

Prints Message mesno., then carries out a NEWLINE action.

SYSMESS sysno.

Prints System Message sysno.

DESC locno.

Prints the text for location locno. without a NEWLINE.

The following actions to deal with the printing of flag values on
the screen;

PRINT flagno.

The decimal contents of Flag flagno. are displayed without
leading or trailing spaces. This is a very useful action. Say

flag 100 contained the number of coins carried by the player,
then an entry in a process table of:-

 MES 10 ;"You have "
 PRINT 100
 MESSAGE 11 ;" gold coins."

could be used to display this to the player.

DPRINT flagno

Will print the contents of flagno and flagno+1 as a two byte
number.

i.e. a number in the range 0-65535 generated as:
(flagno+1) * 256 + (flagno)

DPRINT 255 is meaningless and will produce a random result.

Two actions dealing with listing objects on the screen. They are
controlled/set by the value of flag 53 as described in the
chapter on objects.

LISTOBJ

If any objects are present then SM1 ("I can also see:") is
printed, followed by a list of all objects present at the current
location. If there are no objects then nothing (as in null, not
the word!) is printed.

LISTAT locno+

If any objects are present then they are listed. Otherwise SM53
("nothing.") is printed - note that you will usually have to
precede this action with a message along the lines of "In the bag
is;" etc.

Four actions to allow the current state of the game to be saved &
restored; LOAD and SAVE are both followed by a number which
means:-
0 - Normal action
1 - Save to TAPE (i.e. doesn't ask "Disc or Tape?")
2 - Save to DISC (ditto)

SAVE opt

This action saves the current game position on disc or tape. SM60
("Type in name of file.") is printed and the input routine is
called to get the filename from the player. If the supplied
filename is not acceptable SM59 ("File name error.") is printed -
this is not checked on 8 bit machines, the file name is MADE

acceptable!

LOAD opt

This action loads a game position from disc or tape. A filename
is obtained in the same way as for SAVE. A variety of errors may
appear on each machine if the file is not found or suffers a load
error. Usually 'I/O Error'. The next action is carried out only
if the load is successful. Otherwise a system clear, GOTO 0,
RESTART is carried out.

RAMSAVE

In a similar way to SAVE this action saves all the information
relevant to the game in progress not onto disc but into a memory
buffer. This buffer is of course volatile and will be destroyed
when the machine is turned off which should be made clear to the
player. The next action is always carried out.

RAMLOAD flagno.

This action is the counterpart of RAMSAVE and allows the saved
buffer to be restored. The parameter specifies the last flag to
be reloaded which can be used to preserve values over a restore,
for example an entry of:

 RAMLO _ COPYFF 30 255
 RAMLOAD 254
 COPYFF 255 30
 DESC

could be used to maintain the current score, so that the player
can not use RAMSAVE/LOAD as an easy option for achieving 100%!

Note 1: The RAM actions could be used to implement an OOPS
command that is common on other systems to take back the previous
move; by creating an entry in the main loop which does an
automatic RAMSAVE every time the player enters a move.

Note 2: These four actions allow the next Condact to be carried
out. They should normally always be followed by a RESTART or
describe in order that the game state is restored to an identical
position.

Two actions to allow the game to be paused for a time or until a
key is pressed;

ANYKEY

SM16 ("Press any key to continue") is printed and the keyboard is
scanned until a key is pressed or until the timeout duration has
elapsed if enabled.

PAUSE value

Pauses for value/50 secs. However, if value is zero then the
pause is for 256/50 secs.

Three actions to deal with control of the parser;

PARSE n

The parameter 'n' controls which level of string indentation is
to be searched. At the moment only two are supported by the
interpreters so only the values 0 and 1 are valid.

 0 - Parse the main input line for the next LS.
 1 - Parse any string (phrase enclosed in quotes [""]) that
 was contained in the last LS extracted.

Mode 0 is the primary method for converting the current input
line
of the player to a logical sentence (LS). The detailed
description of the parser provides further details. The command
will extract the next LS from the current input line.

Mode 1 was designed to deal with speech to PSIs. Any string (i.e.
a further phrase enclosed in quotes [""]) that was present in the
players current phrase is converted into a LS - overwriting the
existing LS formed originally for that phrase.

If no phrase is present at level 0 then the input line is called
preceeded with a random prompt - this gets a new input line from
the player automatically when required, removing the problem of
handling multiple phrases by the programmer. At level 1 and above
the next CondAct is carried out. This occurs at all levels if the
LS is invalid. Note that DAAD will look at the next condact in
what can be considered a fail situation - this is different to
what you might expect. Otherwise the next entry is considered
with the new LS of the speech made to the PSI. Because it
overwrites the current LS it must be used carefully - this is
also the reason for doing the next CondAct in a fail situation,
think about it!

If you are using a text based command structure you will need at
least one PARSE 0 CondAct in the main loop somewhere.

e.g. the minimum process 0 without an initialisation might be:-

 _ _ PARSE 0
 MESSAGE "I don't understand"
 REDO

 _ _ PROCESS x ; Deal with any commands
 REDO

To use it to speak to a PSI there will be two or more calling
entries (in process x of the above example) which will be similar
to:

 SAY name SAME pos 38 ;Are they here?
 PROCESS y ;Decode speech..
 DONE ;LS destroyed so always DONE.

 SAY name MESSAGE z ;"They are not here!"
 DONE

With a PROCESS y similar to:-

 _ _ PARSE ;Always do this entry
 MESSAGE x ;"They don't understand"
 DONE

 word word CondAct list ;Any phrases PSI understands

 _ _ MESSAGE x ;as above or different message

NEWTEXT

Forces the loss of any remaining phrases on the current input
line. You would use this to prevent the player continuing without
a fresh input should something go badly for his situation. e.g.
the GET action carries out a NEWTEXT if it fails to get the
required object for any reason, to prevent disaster with a
sentence such as:

 GET SWORD AND KILL ORC WITH IT

as attacking the ORC without the sword may be dangerous!

SYNONYM verb noun

Substitutes the given verb and noun in the LS. Nullword (Usually
'_') can be used to suppress substitution for one or the other
- or both I suppose!

 e.g. MATCH ON SYNONYM LIGHT MATCH

 STRIKE MATCH SYNONYM LIGHT _

 LIGHT MATCH ; Actions...

will switch the LS into a standard format for several different
entries. Allowing only one to deal with the actual actions.

Several actions which deal with jumping, looping and subroutine
control:-

PROCESS procno.

This powerful action transfers the attention of DAAD to the
specified Process table number. Note that it is a true
subroutine call and any exit from the new table (e.g. DONE, OK
etc) will return control to the condact which follows the calling
PROCESS action. A sub-process can call (nest) further process'
to a depth of 10 at which point a run time error will be
generated.

REDO

Will restart the currently executing table, allowing

DOALL locno+

Another powerful action which allows the implementation of an
'ALL' type command.

 1 - An attempt is made to find an object at Location locno.
 If this is unsuccessful the DOALL is cancelled and
 action DONE is performed.

 2 - The object number is converted into the LS Noun1 (and
 Adjective1 if present) by reference to the object
 definition section. If Noun(Adjective)1 matches
 Noun(Adjective)2 then a return is made to step 1. This
 implements the "Verb ALL EXCEPT object" facility of the
 parser.

 3 - The next condact and/or entry in the table is then
 considered. This effectively converts a phrase of "Verb
 All" into "Verb object" which is then processed by the
 table as if the player had typed it in.

 4 - When an attempt is made to exit the current table, if
 the DOALL is still active (i.e. has not been cancelled
 by an action) then the attention of DAAD is returned to
 the DOALL as from step 1; with the object search
 continuing from the next highest object number to that
 just considered.

The main ramification of the search method through the object
definition section is; objects which have the Same
Noun(Adjective) description (where the game works out which
object is referred to by its presence) must be checked for in
ascending order of object number, or one of them may be missed.

Use of DOALL to implement things like OPEN ALL must account for
the fact that doors are often flags only and would have to be

made into objects if they were to be included in a DOALL.

SKIP distance | label

where distance is -128 to 128, or to the specified label.

Will move the current entry in a table back or fore. 0 means next
entry (so is meaningless). -1 means restart current entry
(Dangerous). There is no error checking so it should be possible
to jump out of the table (Fatal).

Skip can also accept as a parameter a local symbol. This is a
symbol preceeded by a $ sign. They are local to each process
table and will not affect any global symbols used. The big
advantage is that they can forward reference.

This is implimented with rear patching. The symbol is defined by
placing it in the source file immediatly before the entry it
refers to:

e.g.

$backloop
_ _ PRINT Flag
 MINUS Flag 1
 NOTZERO Flag
 SKIP $backloop

_ _ ZERO Error
 SKIP $Forward

_ _ EXIT 0

$Forward
_ _ ...

The three actions which completely exit Response/Process execu#
tion:

RESTART

Will cancel any DOALL loop, any sub-process calls and make a jump
to execute process 0 again from the start.

END

SM13 ("Would you like to play again?") is printed and the input
routine called. Any DOALL loop and sub-process calls are
cancelled. If the reply does not start with the first character
of SM31 a jump is made to Initialise. Otherwise the player is
returned to the operating system - by doing the command EXIT 0.

EXIT value

If value is 0 then will return directly to the operating system.
Any value other than 0 will restart the whole game. Note that
unlike RESTART which only restarts processing, this will clear
and reset windows etc. The non zero numbers actually specify a
part number to jump to on AUTOLOAD versions. Only the PCW
supports this feature at the moment. It will probably be added to
PC as part of the HYPERCARD work. So if you intend using it as a
reset ensure you use your PART number as the non zero value!

Three exit table actions;

DONE

This action jumps to the end of the process table and flags to
DAAD that an action has been carried out. i.e. no more condacts
or entries are considered. A return will thus be made to the
previous calling process table, or to the start point of any
active DOALL loop.

NOTDONE

This action jumps to the end of the process table and flags PAW
that #no# action has been carried out. i.e. no more condacts
or entries are considered. A return will thus be made to
the previous calling process table or to the start point of
any active DOALL loop. This will cause PAW to print one of the
"I can't" messages if needed. i.e. if no other action is carried
out and no entry is present in the connections section for
the current Verb.

OK

SM15 ("OK") is printed and action DONE is performed.

There are four actions used to call an external routine to DAAD.
Two SFX and GFX are already provided with a function on several
machines while EXTERN and CALL provide general purpose call
mechanisms. All these commands are documented fully in the
chapter on external commands.

EXTERN value

Calls external routine with parameter value. The address is set
by linking or the #extern pre-compiler command - see the machine
details and extern section for specifics.

CALL address

Allows 'address' in memory (or in the database segment for 16bit)
to be executed. See the extern secion for more details.

SFX value1 value2

This is a second EXTERN type action designed for Sound Effects
extensions. e.g. It has a 'default' function which allows value
'value1' to be written to register 'value2' of the sound chip on
8 bit machines. This can be changed with #sfx or through linking
- see the machine details and extern section for specifics.

GFX value1 value2

An EXTERN which is meant to deal with any graphics extensions to
DAAD. On 16bit it is used to implement the screen switching
facilities. This can be changed with #gfx or through linking. See
the machine details and extern section for specifics.

There are two actions to implement the primary graphics handling
facilities of DAAD. The descriptions especially for 16bit users
should be read in conjunction with the details of the GFX
command, which provides the extended graphics handling.

PICTURE picno

Will load into the picture buffer the given picture. If there is
no corresponding picture the next entry will be carried out,
if there is then the next CondAct is executed.

e.g. The describe of a location in Process 0 would look something
like:-

_ _ PICTURE [Player] ; Try to load/set picture
 DISPLAY [Dark] ; If not dark display

_ _ DESC [Player] ; Text description anyway

Take a look at BLANK.SCE for the full entry dealing with darkness
fully etc.

DISPLAY value

If value=0 then the last buffered picture is placed onscreen.

If value !=0 and the picture is not a subroutine then the given
window area is cleared. This is normally used with indirection
and a flag to check and display darkness - see example for
the PICTURE action.

On a drawstring machine when a location picture (non subroutine)
is drawn, the drawing cursor position is set to the origin and
the colours to those in the colour table. For a subroutine the
picture will start from the endpoint of the last draw. Note that
only the cursor position is maintained - the colours always start
at the current colours for the stream.

On pixel type machines the action will introduce the required
window data and clipped picture to the current stream. If you
size your graphics correctly you can use this to erase a
displayed picture by selecting the same stream and using the CLS
action.

Miscellaneous actions:-

MOUSE option

This action in preparation for the hypercard system implements a
skeleton mouse handler on the IBM.

 4.2 The Machine Interpreters

This section provides information on the use of the interpreter
for each machine. It also provides any relevent information about
machine specific items related to extern handling/mastering etc.

4.2.0 The IBM

Running the interpreter

There are a large number of versions of the interpreter,
depending on language, debugging features, graphics system etc.
All are supplied as an .OBJ file to allow linking with EXTERN
routines.The method used to name them is explained below.

The final .EXE files are standard MSDOS programs. They require
the operating system to be present to do their disc handling -
most screen output is handled within the system.

The most common file you will be working with will be INTSDM if
you are using the Spanish language. This is the 'Interpreter,
Spanish, Developer, Multi-graphics' version. The features of the
development interpreter are also explained in the section on
setting up the development machine.

In order to use the OBJ files you must combine them using LINK
with any external routines you are using.

e.g. In the \DAAD directory (with LINK.EXE somewhere on the
PATH):-

 LINK \OBJ\INTSDM+EXTERN+CHARS,INTSDM;

Will create an INTSDM.EXE file.

The EXTERN module contains any routines to deal with EXTERN.
While the CHARS module contains several external variables which
can be changed by reassembling CHARS.ASM. The CHARS module must
always be the last module listed in the link.

The above link used minimum EXTERN and CHAR files that are
supplied in an .OBJ format for those who don't have an assembler.
In order to change the number of parts in production games (set
to 2 in the supplied CHARS.OBJ) and to add external routines you
will need to be able to assemble the .ASM files. This will
require an assembler such as MASM which produces LINK compatible
object files.

Non developer interpreters have the form:-

 INTl{M {V}}

The developer interpreters:-

 INTlD{M} name {M|C|E|V}

where l is the language

M present indicates multi-machine (.DAT) graphics files (The V
option is valid only with these machine versions)
otherwise .CGA/.EGA files from DMG will be searched for.

name is the name of a .DDB file (you cannot specify a DRIVE/PATH
or extension here). - Developer Only

M selects text MDA mode \
C selects CGA four colour 320x200 mode (default) |Developer only
E selects EGA sixteen colour 320x200 mode /
V selects VGA 16 colour palette 320x200 mode
Developer/Release
(the V option can be used only with the 'M' type interpreters)

examples:

Assuming you have LINKed the versions of the interpreter you
require and placed them in \DAAD or any directory on the PATH:-

A>INTSDM CAVE

would run the Spanish adventure CAVE.DDB from the default drive
in CGA using multi-machine graphics (a .DAT file sent from the
ST), providing full debug information.

A>INTED CAVE E

would run the English adventure CAVE.DDB in EGA using a PC-
DMG produced .EGA graphics file, providing full debug
information.

A>INTSM

would run the Spanish adventure PART1/2/x (as defined in CHARS)
- selected by the user. Using multi-machine graphics in the
highest graphics mode available in the order EGA,CGA. If no
graphics card can be found then a switch is made to MDA text
mode.

A>INTEM V

would run the English adventure PART1/2/x (as defined in CHARS)
- selected by the user. Using multi-machine graphics in VGA mode
if available else in the order EGA,CGA. If no graphics card can
be found then a switch is made to MDA text mode.

Language special characters

The IBM interpreter for Spanish recognises the standard 'dead'
keys to generate accented characters and special symbols. This
will of course only work if the correct keyboard driver (using
KEYB) has been installed.

Special Notes

The IBM (and indeed the ST/AMIGA) interpreter uses a method of
fitting 53 text columns onto the 320x200 pixels in the graphics
modes. This is achieved by using 6 pixels for the width only.
There is a catch though. All scrolling and clearing is carried
out on the 40 columns provided by an 8pixel character width. This
is similar to the method used on the Spectrum to obtain 42 col#
umns.

So you should take care when specifying window sizes. Their size
will always be modified to the nearest 8 pixels suitable to
contain the required number of text columns. The actual text
printer allows true 53 column windows, it is only with clearing
and scrolling that any problem may occur. A general rule is that
at least one text column gap should be left between windows if
you want them to scroll or clear without affecting adjacent
windows.

Files to do with the game

The following files will need to be present in the current
directory for the game to run. The Interpreter files can be
anywhere as long as they are on the path of course.

1/ Old PC DMG graphics:

INTl.EXE ;Interpreter
This file should be linked with a CHARS module with the correct
number of 'parts'. The CHARS.OBJ supplied has it set to two. The
file should be renamed to your game name.

PARTx.CHR ;Character set data (from Spectrum usually)
PARTx.DDB ;Text database (from .SCE files and DC)
PARTx.CGA ;CGA graphics file (from DMG)
PARTx.EGA ;EGA graphics file (from DMG)
These three files must be present for each part of your game

PART1.CGS ;CGA loading screen (use CSTA/CACGA utilities)
PART1.EGS ;EGA loading screen (made from PI1 using CSTEGA)
The screen files are optional, a blank screen is presented if no
file is found.

for an autoswitching CGA/MDA version only remove the EGA files
and replace the interpreter with 'INTlCGA.EXE'.

2/ New ST DMG graphics:

INTlM.EXE The interpreter where l is S or E at the moment
This file should be linked with a CHARS module with the correct
number of parts set. The CHARS.OBJ supplied has it set to two.
The file should be renamed to your game name.

PARTx.CHR A character set
PARTx.DDB The database (from .SCE files and DC)
PARTx.DAT Common graphics file (from DMG on the ST)
These three files must be present for each part of your game

PART1.CGS ;CGA loading screen (use CSTA/CACGA utilities)
PART1.EGS ;EGA loading screen (made from PI1 using CSTEGA)
PART1.VGS ;VGA loading screen (made from PI1 using CSTVGA)
The screen files are optional, a blank screen is presented if no
file is found.

Files needed for a standalone copy

In addition to the files listed above if you want the disc to
autoboot then you need to have formatted the disc with the '/S'
option. Then the files COMMAND.COM and AUTOEXEC.BAT (which will
contain at least one line with the name of the game) will need to
be present.

REMEMBER You are not allowed to release software with MSDOS
present - it is against the distribution agreement.

4.2.1 The Spectrum

Running the interpreter

On DISCiPLE

 LOAD d1"drs"

On +3
 LOAD "drs"

Files required to run the game

You will need the database and graphics files.

Files required for a standalone copy

This is best achieved by combining each of the memory blocks and
saving them as a single file. A simple BASIC loader based on the
'drs' or 'drl' programs can be used to load a screen and the
file.

Language special characters

The special characters of Spanish are entered by selecting
EXTENDED MODE (i.e. Single key on 128/+2, or CAPS and SYMBOL
SHIFTS on 48K), then pressing the corresponding key as shown in
the table below:-

!,?,a,e,i,o,u,n.
¡,¿,á,é,í,ó,ú,ñ

In addition if key D or F are placed after EXTENDED MODE you will
get ¤ and ¥ respectivly, which are the keys they are on in Spain!

Special Notes

The Spectrum interpreter (and indeed the MSX which emulates it)
uses a 40 column mode which crams 4 text columns into a group of
three normal columns. Note that this means colour boundaries for
windows must be worked out carefully as only whole Spectrum
columns are cleared and scrolled by the window system - as though
the attribute screen is stuck at 32 columns by the hardware. If
two 40col columns fall in a 32col column, then clearing,
scrolling or setting attributes will affect both 40cols
#whichever#
you are using actually. This does not apply to printing as the
print system masks its characters correctly allowing windows to
contain text as you would expect.

4.2.2 The CPC

Running the interpreter

For the Amstrad you will need to create a runable program. The
program MCRF.COM is used under CPM to create a fully self con#
tained program which can be started using RUN"name". The
format is:-

MCRF oufile{.BIN} interp{.Z80} text{.DDB|.BIN} graphics{.BIN}

Note that you must specify the type of text database. DDB is from
the compiler direct and BIN is assumed to have a CPC disc header.
The default at the moment is BIN, but we advise you send DDB
files and give the full name. This means you don't need to use
'AAH' on the PC to add an Amstrad disc header.

Files required to run a game

The disc will have to contain CPM if working with CPM2.2 as you
need to run MCRF.
DCPCIl.Z80 ;The interpreter
Where l is E for English or S for Spanish
name.DDB ;A text database from the PC
name.BIN ;A graphics file drawn/edited with DG.

MCRF.COM

Files required for a standalone copy

Only the runable BIN file created by MCRF is needed. You may add
a small boot program to load a screen, set colours etc if
required.

Language Special characters

The special letters are as follows on DCPCIS.Z80

CTRL a,e,i,o,u,n - á,é,í,ó,ú,ñ
CTRL v - ü
CTRL 1 - ¡
The /? key now gives ¿?
ñ works as expected

Notes

The INK & PAPER options set the ink to use 0-3 for writing
characters, these depend on the colours set in the graphics
database. BORDER sets the actual physical colour for the border
0-26.

4.2.3 The CBM

Running the interpreter

The Spanish interpreter is called SDI or DC64IS.

The interpreters contain a small BASIC program which allows them
to be saved to TAPE and reloaded using SHIFT/RUNSTOP, or from
disc using LOAD"name",8 and RUN. Although for anything other than
small programs it is better to use the loaders described below as
the LOAD"",8,1 memory load is unreliable.

There are two small programs on the release disk called LDS1 and
LDS2 these can be renamed to anything you like.

You start them with:-

 LOAD "name",8,1 ; Where name is the renamed LDSx

They will then load SDI and the text and graphics databases which
you must call PARTx, then start the game.

Language Special characters

The special letters are obtained as follows on the CBM for the
Spanish interpreter DC64IS.

CTRL a,e,i,o,u,n - á,é,í,ó,ú,ñ
CTRL v - ü
<- (next to 1 topleft) - ¡
The /? key gives ¿?
[: is now ñÑ (upper and lower case)

4.2.4 The MSX

Works just like all the other versions really. The Spanish
interpreter recognises all the accented letters as typed from the
keyboard.

Also see the note about 40 columns on the Spectrum.

There is a subtle difference between the MSX and Spectrum: Each
pixel line on MSX has its own colour attribute. This can cause
some slight problems in the graphics when ported. In order to
maintain speed only the pixel attributes above and below the one
being plotted are set (this is not strictly true, they are only
set if the correspond to an 8x8 line,column position). This will
provide a fair emulation of the Spectrum but can cause hassle if
the graphics are drawn assuming that the entire charcter cell
colour will be set when drawing a line through it. N.B. IT IS TOO
SLOW to set all 8 pixel lines!

4.2.5 The ST

At the moment we supply two versions of the interpreter:

lDIn.PRG
lDInL.PRG
Where l is the language and n the number of parts.

The xxxL.PRG versions do not allow the program to run in Medium
Res. This effectively stops use in text mode.

Running the interpreter

Just click on the PRG file. This can of course be renamed to
whatever you want.

Files required to run the game

lDIn.PRG or lDInL.PRG (renamed to the game name)

PARTx.CHR A character set for hi-res 8x8 mode
PARTx.CH0 A character set for lo-res 6x8 mode
PARTx.DDB The database (from .SCE files and DC)
PARTx.DAT Common graphics file (from DMG)
These four files must be present for each part of your game. You
can omit the CHR file if using the lo-res only interpreter.

PART1.SCR ;loading screen (renamed PI1 file)

The screen file is optional, a blank screen is presented if no
file is found.

You may also like to open a window, centre the PRG file in it and
save the desktop. As this may move which file is displayed
(because there is now another file on the disk) you may need to
repeat the process.

The requirements for a standalone copy are the same!

Language special characters

You do not need the ACCENTS program in an auto folder. In fact if
you add it you will have to press the accent keys TWICE! Other
than that the 'dead' keys work as you would expect.

4.2.6 The Amiga

There is only a single interpreter for each language on the Amiga

lDIn

Where l is the language and n the number of parts.

Running the interpreter

From the command line type the name of the interpreter. If you
create a 'TOOL' type icon and give it the same name as the inter#
preter you can just click on the program icon. They can of course
be renamed to whatever you want.

Note that the interpreter is a true multi-tasking process. You
can grab the top line of the screen to drag it down to reveal the
desktop. If memory allows you can start another copy of the game
or a different part or even different game/program! Also you can
click on the top right part of the screen just as if the usual
intuition 'move window to the back' and 'move window to the
front' gadgets were present.

Files required to run the game

lDIn (renamed to the game name)
lDIn.info (a TOOL type icon)

PARTx.CHR A character set for lo-res 6x8 mode
PARTx.DDB The database (from .SCE files and DC)
PARTx.DAT Common graphics file (from DMG on the ST)
These three files must be present for each part of your game.

PART1.SCR ;loading screen (PI1 file converted to .BIT with
 DSTA on ST)

The screen file is optional, a blank screen is presented if no

file is found.

Files required for a standalone copy

You will need to create a disk which contains the Minimum AMIGA
OS. (If you keep a copy of this disk you can just make a copy
each time you make a master).

Place all the above files on the disk then change the last line
in the 's/startup-sequence' directory to the name of your
interpreter.

Language special characters

You must ensure that the correct langauge keyboard driver is
present in the device folder of the boot disk. If so all the
accents will work as expected!

4.2.7 The PCW

Only one interpreter is supplied for each laguage on the PCW:

DPCWIl.Z80
where l is the language. This needs to be renamed as a .COM file
before you can use it.

Running the interpreter

From the A: prompt type the name of the interpreter.

Files required to run the game

DPCWIl.Z80 renamed to gamename.COM

PARTExxx.CHR A character set for 8x8 mode
PARTExxx.DDB The database (from .SCE files and DC)
PARTExxx.DAT Common graphics file (from DMG on PC)
These three files must be present for each part of your game. You
can omit the CHR file if using the lo-res only interpreter.

PART001.SCR ;loading screen (CST1PCW from a PI1 file)
The screen file is optional, a blank screen is presented if no
file is found.

The requirements for a standalone copy are the same!

Language special characters

All the accent keys will work as expected.

Notes:-

The screen on the PCW has 31 lines by 96 columns and this will

need some special processing. All the window commands can use
this size screen, but we suggest that you will need quite a few
#if PCW statements!

This is the first interpreter to feature the AUTOLOAD system.
This allows the EXIT n command to select part 'n' which will then
be loaded automatically.

All filenames have to have the format PARTExxx.eee.

The interpreters expect to find all of part 1 files on side A,
and all of part 2 on side B. We will hopefully produce an install
utility in the future, but this should be OK for the moment.

4.3 Errors

Although we do as much checking as we can in the Compiler there
are a few errors that cannot be detected until runtime.

The interpreters can throw up several types of error. Usually in
a little window at the top left on 8 bit and centred on 16 bit,
but if during a save they will be printed in the current input
stream as they do not cause the game to restart.

The errors are:
I/O Error These two are obvious
BREAK
Error n Where n is the normal machine error
Game Error n Where n is one of
 0 - Invalid object number
 1 - Illegal assignment to HERE (Flag 38)
 2 - Attempt to set object to loc 255
 3 - Limit reached on PROCESS calls
 4 - Attempt to nest DOALL
 5 - Illegal CondAct (corrupt or old db!)
 6 - Invalid process call
 7 - Invalid message number
 8 - Invalid PICTURE (drawstring only)

In the debug version of the interpreters, Game/Runtime Errors are
followed by four numbers in the form p:v,n>c where p is the
process number, v and n are the word numbers of the verb and noun
of the entry which caused the error, and c is the CondAct number
as given in the section on the compiler.

a) The error Nos. have the meanings given above.

b) The Process Table No. should need no further explanation.

c) The word values can be looked up in the Vocabulary. NB A word
 value of 255 means the nullword character.

d) The valid Condition/Action Nos have the following meanings:-

 0 AT 32 AUTOD 64 BEEP 96 INPUT
 1 NOTAT 33 AUTOW 65 PAPER 97 SAVEAT
 2 ATGT 34 AUTOR 66 INK 98 BACKAT
 3 ATLT 35 PAUSE 67 BORDER 99 PRINTAT
 4 PRESENT 36 SYNONYM 68 PREP 100 WHATO
 5 ABSENT 37 GOTO 69 NOUN2 101 CALL
 6 WORN 38 MESSAGE 70 ADJECT2 102 PUTO
 7 NOTWORN 39 REMOVE 71 ADD 103 NOTDONE
 8 CARRIED 40 GET 72 SUB 104 AUTOP
 9 NOTCARR 41 DROP 73 PARSE 105 AUTOT
 10 CHANCE 42 WEAR 74 LISTAT 106 MOVE
 11 ZERO 43 DESTROY 75 PROCESS 107 WINSIZE
 12 NOTZERO 44 CREATE 76 SAME 108 REDO
 13 EQ 45 SWAP 77 MES 109 CENTRE
 14 GT 46 PLACE 78 WINDOW 110 EXIT
 15 LT 47 SET 79 NOTEQ 111 INKEY
 16 ADJECT1 48 CLEAR 80 NOTSAME 112 BIGGER
 17 ADVERB 49 PLUS 81 MODE 113 SMALLER
 18 SFX 50 MINUS 82 WINAT 114 ISDONE
 19 DESC 51 LET 83 TIME 115 ISNDONE
 20 QUIT 52 NEWLINE 84 PICTURE 116 SKIP
 21 END 53 PRINT 85 DOALL 117 RESTART
 22 DONE 54 SYSMESS 86 MOUSE 118 TAB
 23 OK 55 ISAT 87 GFX 119 COPYOF
 24 ANYKEY 56 SETCO 88 ISNOTAT 120 internal
 25 SAVE 57 SPACE 89 WEIGH 121 COPYOO
 26 LOAD 58 HASAT 90 PUTIN 122 internal
 27 DPRINT 59 HASNAT 91 TAKEOUT 123 COPYFO
 28 DISPLAY 60 LISTOBJ 92 NEWTEXT 124 internal
 29 CLS 61 EXTERN 93 ABILITY 125 COPYFF
 30 DROPALL 62 RAMSAVE 94 WEIGHT 126 COPYBF
 31 AUTOG 63 RAMLOAD 95 RANDOM 127 RESET

NB You must test your adventure to ensure you do not get any of
these runtime errors!

4.4 The parser

The parser works by scanning an input line (up to 125 characters)
for words which are in the vocabulary, extracting 'Phrases' which
it can turn into Logical sentences.

When a phrase has been extracted, the Response and Connections
tables are scanned to see if the Logical Sentence is recognised.
If not then system message 8 ("I can't do that") or system
message 7 ("I can't go in that direction") will be displayed
depending on the Verb value (i.e. if less than 14 then system
message 7 will be used) and a new text input is requested. A new
text input will also be requested if an action fails in some way
(e.g. an object too heavy) or if the writer forces it with a
NEWTEXT action. The results might otherwise be catastrophic for
the player. e.g. GET AXE AND ATTACK TROLL, if you don't have the
axe you wouldn't really want to tackle the Troll!

If the LS is successfully executed then another phrase is
extracted or new text requested if there is no more text in the
buffer.

Phrases are separated by conjugations ("AND" & "THEN" usually)
and by any punctuation.

A Pronoun ("IT" usually) can be used to refer to the
Noun/Adjective used in the previous Phrase - even if this was a
separate input. Nouns with word values less than 50 are Proper
Nouns and will not affect the Pronoun.

The Logical Sentence format is as follows:-

(Adverb)Verb(Adjective1(Noun1))(preposition)(Adjective2(Noun2))

where bracketed types are optional. i.e. the minimum phrase is a
Verb (or a Conversion Noun - a Noun with a word value <20 - which
if no Verb is found in a phrase will be converted into a Verb
e.g. NORTH). If the Verb is omitted then the LS will assume the
previously used Verb is required. i.e. GET SWORD AND SHIELD will
work correctly! The current 'IT' (pronoun) will become the first
Noun in a list like this. Ie 'IT' would be replaced with SWORD in
the example. It (if you will excuse the pun) will not change
until a different Verb (or conversion Noun) is used.

Note that the phrase does not strictly have to be typed in by the
player in this format. As an example:

 GET THE SMALL SWORD QUICKLY
 QUICKLY GET THE SMALL SWORD
 QUICKLY THE SMALL SWORD GET

are all equivalent phrases producing the same LS. Although the
third version is rather dubious English.

A true sentence could be:-

 GET ALL. OPEN THE DOOR AND GO SOUTH THEN GET THE BUCKET AND
 LOOK IN IT.

which will become five LS's:-

 GET ALL
 OPEN DOOR (because THE is not in the vocabulary)
 SOUTH (because GO is not in the vocabulary)
 GET BUCKET
 LOOK BUCKET (from IT) IN (preposition)

Note that DOALL will not generate the object described by
Noun(Adjective)2 of the Logical sentence. This provides a simple
method of implementing EXCEPT. e.g. GET ALL EXCEPT THE FISH, it
has the side effect of not allowing PUT ALL EXCEPT THE FISH IN
THE BUCKET, as this has three nouns!

4.4.1 Spanish

If a Verb is less than 5 letters you will need to include the
lo,la,los and las versions in the vocab. Obviously if it is four
letters you only need 'l' ending as a synonym, if it is three
letters you need 'lo' and 'la' synonyms and if it is one or two
letters you need 'lo','la','los' & 'las'!

If you have a plural noun in the game which changes its stress
then you need to include the stressed and unstressed - See
talones in the demo game for an example.

The Spanish Parser deals with NOUNS,PRONOUNS and ADJECTIVES
differently to the English. Specifically it assumes that
adjectives FOLLOW nouns, and does not deal with compund nouns. A
compound noun is where an object is described by two nouns such
as PARK BENCH. where the player may use either or both words to
describe the item. E.g. GET BENCH, GET PARK, GET PARK BENCH. PARK
and BENCH would probably be synonyms and the problem does not
arise until you use a second noun. E.g. PAINT PARK BENCH WITH
BRUSH. Here BRUSH should be NOUN2, but the parser would assume
PARK was NOUN1 and BENCH was NOUN2. The English parser deals with
this situation, but it is complicated to do for Spanish.

4.5 The flags

The normal flags are free for use in any way in games. But see
the SYMBOLS.SCE file. This defines a use for every flag from 0-63
- the 'system' flags. It also defines symbolic names for the
system flags. Although DAAD does not reference all of these (only
those shown below) they may be treated specially by future
upgrades so treat them with care.

The best way to test the bit defined flags is to use the HASAT
CondAct. For example HASAT MOUSE (assuming SYMBOLS.SCE has been
included) will be true if a mouse is present.

Flag 0 When non zero indicates game is dark (see also object 0)
Flag 1 Holds quantity of objects player is carrying (but not
 wearing)

Flags 2 to 28 are not actually used by the DAAD interpreters
anywhere. Thus they are free for use in your own games. Athough
the DAAD SYMBOLS.SCE file defines some predefined uses which we
suggest you adhere to.

Flag 29
 7 - Set if there are graphics available. If the flag is less
 than 128 then you can assume that you are in 80 column text
 mode (because only the ST and the IBM will not set this bit,
 and that is when they are running in 80 column text mode!
 6 - Invisible draw mode for Drawstring machines. When set this
 bit causes drawstring machines that have a palette (i.e.
 CPC!) to refrain from setting the colours until the entire
 picture has been draw. If the pictures are complicated then
 it looks a little too much like the machine has crashed!
 5 - Pictures OFF (drawstring only)
 4 - Wait for a key after drawing picture (drawstring)
 3 - Change BORDER to picture colours (drawstring)
 2/1 Undefined
 0 - Mouse present (16 bit only).

Flag 30 Score flag - not actually used directly by DAAD but its
traditional!
Flag 31/32 (LSB/MSB) holds number of turns player has taken
 (actually this is the number of phrases extracted from
 the players input).

Flag 33 holds the Verb for the current logical sentence
Flag 34 holds the first Noun in the current logical sentence
Flag 35 holds the Adjective for first Noun
Flag 36 holds the Adverb for the current logical sentence

Flag 37 holds maximum number of objects conveyable (initially 4)
 Set using ABILITY action.
Flag 38 holds current location of player

Flag 39/40 Unused

Flag 41 Gives stream number for input to use. 0 means current
stream. Used Modulo 8. I.e. 8 is considered as 0!

Flag 42 holds prompt to use a system message number - (0 selects
one of four randomly)

Flag 43 holds the Preposition in the current logical sentence
Flag 44 holds the second Noun in the current logical sentence
Flag 45 holds the Adjective for the second Noun
Flag 46 holds the current pronoun ("IT" usually) Noun
Flag 47 holds the current pronoun ("IT" usually) Adjective

Flag 48 holds Timeout duration required
Flag 49 holds Timeout Control flags
 7 - Set if timeout occurred last frame
 6 - Set if data available for recall (not of use to writer)
 5 - Set this to cause auto recall of input buffer after timeout
 4 - Set this to print input in current stream after edit
 3 - Set this to clear input window
 2 - Set this so timeout can occur on ANYKEY
 1 - Set this so timeout can occur on "More..."
 0 - Set this so timeout can occur at start of input only

Flag 50 holds Objno. for DOALL loop. i.e. value following DOALL

Flag 51 holds last object referenced by GET/DROP/WEAR/WHATO etc.
 This is the number of the currently referenced object as
 printed in place of any underlines in text.

Flag 52 holds players strength (maximum weight of objects carried
 and worn - initially 10)
 Set with ABILITY action.

Flag 53 holds object print flags
 7 - Set if any object printed as part of LISTOBJ or LISTAT
 6 - Set this to cause continuous object listing. i.e. LET 53 64
 will make PAW list objects on the same line forming a valid
 sentence.

Flag 54 holds the present location of the currently referenced
 object
Flag 55 holds the weight of the currently referenced object
Flag 56 is 128 if the currently referenced object is a container.
Flag 57 is 128 if the currently referenced object is wearable

Flag 58/59 is the currently referenced objects user attribs

Flags 60 & 61 are the Key flags which give the key code returned
after an INKEY condition succeeds. Flag 61 is only relevant on
IBM,ST and AMIGA where it is used to provide the extended codes
when a cursor or function key is pressed. In this case Flag 60 is

zero and Flag 61 contains the IBM extended code.

Flag 62 on ST and PC gives the absolute screen mode in use on the
machine. This allows checks to be made as to size of screen etc,
but to determine if you are in graphics mode see Flag 29.
On the ST:
0 - lo-res
1 - med-res
On the PC:
4 - Means CGA
7 - Means mono character only
13 - is EGA or VGA
+128 (Bit 7 is set) in VGA to indicate you have palette
switching.

Flag 63 defines the currently active window. Note that this is a
copy so changing its value will not affect the DAAD system.

Flag 64 to 255 are available for your own use.

 Section 5.0 - The Source File

The source file consists of a number of inter-related sections
describing the adventure. They usually correspond with the areas
found in the database. The sections are:-

The Control (CTL) section

This section tells the compiler which character has been chosen
as a null word. Throughout this manual the null word is assumed
to be an underline _. It should not be necessary to change this
setting, it is not advised anyway.

The Vocabulary (VOC) section

Each entry in this section contains a word (or the first five
characters of a word), a word value and a word type. Words with
the same word value and type are called synonyms. An optional
language specifier can be given to fix a word to a specific
language.

The System Messages (STX) section

This section contains the messages used by the Interpreter which
are numbered from 0 upwards. The description of the Interpreter
shows when these messages are used. In addition extra messages
can be inserted by the writer to provide messages for the game if
so required.

The Message Text (MTX) section

This section contains the text of any messages which are needed
for the adventure. The messages are numbered from 0 upwards.

The Object Text (OTX) section

This section, which has an entry for each object, contains the
text which is printed when an object is described. An object is
anything in the adventure which may be manipulated and objects
are numbered from 0 upwards. Object 0 is assumed by the
Interpreter to be a source of light.

The Location Text (LTX) section

This section, which has an entry for each location, contains the
text which is printed when a location is described. The entries
are numbered from 0 upwards and location 0 is the location at
which the adventure starts.

The Connections (CON) section

This section has an entry for each location and each entry may
either be empty (null) or contain a number of movements. A

movement consists of a Verb (or conversion Noun) from the
vocabulary followed by a location number. This means that any
Verb (or conversion Noun) with that word value causes movement to
that location. A typical entry could be:-

SOUTH 6
EAST 7
LEAVE 6
NORTH 5

which means that SOUTH or LEAVE or their synonyms cause movement
to location 6, EAST or it's synonyms to location 7 and NORTH or
it's synonyms to location 5.

Note 1. When the adventure is being played it is only the LS Verb
 which will cause movement.

Note 2. If a movement is performed by an entry in the Response
 table using the GOTO action, then it may not be needed in
 the Connections table, unless that entry is required for
 a PSI who can move unconditionally.

The Object Definition (OBJ) section

This section has an entry for each object which specifies:-

 a) The location at which the object is situated at the
 beginning of the adventure.
 b) The objects weight.
 c) The noun and adjective associated with the object.
 d) Whether the object is a container.
 e) Whether the object can be worn/removed.
 f) The state of the other object attributes

The Process tables (PRO) section

This section forms the heart of the source file providing the
main game control. Each table consists of a number of entries.
Each entry contains the Verb and Noun for the LS the entry is to
deal with followed by any number of condacts. When the adventure
is played, if there is an entry in the table which matches the
Verb and Noun1 of the LS entered then the condacts are performed.
The condacts that may be present and the effect that they have is
fully specified in the description of the Interpreter. The LS can
of course be set using a method other than the PARSE action. This
would allow the creation of a menu system, multiple-choice entry
etc.

Process table 0

This contains the main control of a DAAD program. It is entered
after initialisation with the current LS empty. It will normally
consist of '_ _' word entries and some form of looping.

Process 1 (and upwards)

These are optional and define sub-processes that can be
referenced using the PROCESS action.

Compiler Pre-processor commands

This is not really a section, although some of the commands may
generate data in the database. The compiler accepts a number of
commands to carry out a variety of tasks at compile time which
may be interspersed within the source file. Their syntax is
included in following section along with an exceptions to their
use. Although there is generally no restriction on the placing of
pre-compiler commands, there are places where their use is
inappropriate or pointless!

 5.1 Syntax of The Source File

The source file consists of a number of sections which must be
present in the correct order. A good example of a source file is
BLANK.SCE. Each line of the source file should be shorter than
256 characters. If not you may get strange results. Any line
with a semicolon in the first column is regarded as a comment.
Blank lines are only allowed in the process tables. Any line
starting with a # is considered to contain a pre-compiler command
as is any line starting with /LNK. Within the process tables
only, a line beginning with a $ will be considered to contain a
local label.

In the definitions of each section of the source file which
follow:-

 a) 'w-s' means white space ie spaces or TAB characters.
 b) Items in {} are optional.
 c) 'EOL' means End of line.
 d) When a number is required, unless otherwise indicated, you
 may use an expression made up of numbers and/or symbols
 joined by the operators plus '+' and minus '-'. The
 expression is evaluated left to right. It must evaluate to a
 single number. i.e. Undefined symbols cause an error. This
 means that you cannot use forward references.
 e.g. (assuming PSIBase=100):-
 PSIBase+9 will evaluate to 109.
 e) 'comment' is any sequence of characters, they will be
 ignored. Although the compiler allows them without any
 leading character in certain places it is advised that you
 always place a semicolon ';' in front.

CTL

The Control section consists of 3 lines as follows:-

/CTL {comment} EOL
NULLWORD {comment} EOL

Note:
 a) NULLWORD is the character to be used as a null word. One
 character not a-Z or 0-9. It is not advised that you change
 this definition.

VOC

The Vocabulary section starts with the line:-

/VOC {comment} EOL

and can be followed by any number of lines as follows:-

{w-s} WORD w-s VALUE w-s WORDTYPE {w-s{LANG}{w-s}{;comment}} EOL

Notes:
 a) Only the 1st 5 chars of WORD are significant,
 b) They are converted to upper case & only A-Z 0-9 allowed,
 plus any special characters as defined in the current
 language. For example if command line option 'l1' (Spanish)
 is selected ,‚,¡,¢,£,,¤ can be used in Vocab words.�
 c) Duplicate words are not allowed.
 d) VALUE is in range 1-254
 e) WORDTYPE must be one of; VERB, NOUN, ADJECTIVE, ADVERB,
 PREPOSITION, PRONOUN or CONJUGATION.
 f) In the interpreter Nouns < 20 can be used as verbs if no
 verb is entered. Verbs < 14 are used as movement words.
 g) LANG is an optional one letter language tag. E.g. S for
 Spanish. E for English. This ensures that the word is
 included only when the SCE file is compiled with that
 language selected on the command line. This is used with the
 #lookup pre-compiler command to allow multi-language .SCE
 files.

STX, MTX, OTX & LTX

The System Message Text section starts with the line:-

/STX {comment} EOL

The Message Text section starts with the line:-

/MTX {comment} EOL

The Object Text section starts with the line:-

/OTX {comment} EOL

The Location Text section starts with the line:-

/LTX {comment} EOL

Within each section each entry consists of:-

/n {w-s {comment}} EOL

then any number of text lines not starting with /

Notes:
 a) 'n' must evaluate to consecutive numbers & start at zero.
 b) STX limit is 60-255
 c) MTX limit is 1-255
 d) OTX limit is 1-255
 e) LTX limit is 1-252

 f) The text lines should only contain normal ASCII printable
 characters, or an escape code as described below. The
 Compiler will give you a warning if it finds any control
 characters in the text. Any character with a value less
 than decimal 32 or greater than 127 is considered a control
 code including TAB's (which are code 9). The Compiler only
 gives a warning about control codes - If you leave them in
 it may confuse the Interpreter and some control codes may
 also confuse the Compiler.

 g) Special characters can be included in the text using escape
 sequences generated by the escape character backslash '\':-

 \s is accepted in text as a space. It is needed for putting
 a space on the end of lines - or at the start to avoid TAB
 codes. This makes listings more obvious and overcomes the
 fact that some text editors remove spaces from the end of
 lines during editing.

 \f is used as a forced space. It is actually a seperate
 character in the character set (code 127 funnily enough)
 which looks like a space. This allows two words to be kept
 together that the word#wrapping system would split up. This
 is most commonly needed for names or trademarks which should
 be kept together. E.g. Kit\fKat in the source file would
 ensure the two words Kit and Kat were always on the same
 line.

 \b (borrar!) will activate the CLS function of the print
 routine to clear the current window.

 \k will activate a wait for a key during printing. You would
 normally use this with \b. e.g. \k\b wait for a key, clear
 the window and continue with further text

 \g will activate a shift to the (normally graphic) upper
 half of the character set. In IBM text mode this will cause
 all charac#ters to be ignored except the CAPS A-Z which are
 displayed as such. This is because it is assumed that you
 will use these for special text words (such as names of
 spells etc in another character set) and they will need to
 be visible in text mode.

 \t will restore the lower (text) part of the character set

 \A -> \P will generate the DAAD character code 16-31. These
 are the special language characters which vary for the
 different languages. An appendix gives further details of
 the character set.

 \\ will generate a single backslash character.

 h) When a language is specified using command line option 'l'

 from the compiler several extra characters can be used
 directly in the text. Your text editor must be able to
 handle the IBM special characters to be able to use this
 facility. The codes which are accepted when 'l1' Spanish is
 selected are shown below:-

 Symbol IBM code DAAD code Escape
 ª 166 16 A
 ¡ 173 17 B
 ¿ 168 18 C
 « 174 19 D
 » 175 20 E
 á 160 21 F
 é 130 22 G
 í 161 23 H
 ó 162 24 I
 ú 163 25 J
 ñ 164 26 K
 Ñ 165 27 L
 ç 135 28 M
 Ç 128 29 N
 ü 129 30 O
 Ü 154 31 P

 Any of these can be used in text (and will appear correctly
 on the target machine).

 If you need to access the characters in any language then
 use the escape sequences \A to \P (using capital letters).
 This will not then require the language switch to be
 selected. Although what the character appears as may change
 from language to language.

 i) The Compiler joins consecutive non-null lines with a space
 eg:

 I will be printed by the Interpreter as
 am big.
 So are you. I am big. So are you.

 j) The Compiler converts null lines into carriage returns eg

 I am will be printed by the Interpreter as
 big.
 I am big.
 So So are you.
 are you.

 Similarly

 I am big.
 I am big.

 So are So are you.
 you.

CON

The Connections section starts with the line:-

/CON {comment} EOL

Each entry consists of:-

/n {w-s {comment}} EOL

then any number of lines

{w-s} WORD w-s LOCNO {w-s{;comment}} EOL

Notes:
 a) There must be the same no of entries as in LTX.
 b) 'n' must evaluate to consecutive numbers & start at zero.
 c) WORD must be in the vocabulary as a Verb (or Noun < 20).
 d) LOCNO must be specified in LTX.

OBJ

The Object Definition section starts with the line:-

/OBJ {comment} EOL

Each line consists of:-

/n w-s LN w-s WT w-s CONT w-s WR w-s NOUN w-s ADJ {w-s{;com}} EOL

Notes:
 a) n must start at 0 & be consecutive.
 b) There must be the same number of entries as OTX.
 c) LN is the objects position at the start of the adventure and
 must be specified in LTX, or be 252-254, WORN, CARRIED or
 the null word character.
 252 and the null word character mean not created
 253 and WORN mean worn
 254 and CARRIED mean carried
 d) WT is the objects weight in the range 0-63.
 e) CONT specifies if the object is a container. It can be Y or
 the null word.
 f) WR specifies if the object can be worn/removed. It can be Y
 or the null word.
 g) NOUN is a noun in the vocabulary which refers to the object
 or the null word.
 h) ADJ is an adjective in the vocabulary which refers to the
 object or the null word.
 i) If an object starts worn then WR must be Y.

 j) You cannot specify an Adjective without a noun.

PRO

The Process section consists of a number of tables each of which
starts with the line:-

/PRO {w-s} n {w-s{comment}} EOL

Notes:
 a) n is the number of the Process table and must start at 0 and
 be consecutive.
 b) You must always specify a minimum of 1 process table.
 c) Blank lines between entries or lines starting w-s; are
 ignored.
 d) Lines starting with $ are assumed to specify a local label.
 They should normally be placed on the line immediatly before
 an entry. They record the entry number of the next entry for
 use with SKIP.

Each entry starts with:-

V w-s N w-s KEYWORD {w-s PARAM1 {w-s PARAM2}} {w-s{;comment}} EOL

then any number of:-

w-s KEYWORD {w-s PARAM1 {w-s PARAM2 }} {w-s{;comment}} EOL

Notes:
 a) V must be a verb in the vocabulary, a noun < 20 in the
 vocabulary or the null word character.
 b) N must be a noun in the vocabulary or nullword character.
 c) KEYWORD can be a CONDITION or ACTION.
 d) Anything in col 1 is assumed to be the start of the next
 entry.
 e) PARAM1 only may be enclosed in square brackets '[]' for most
 CondActs which have a parameter. This indicates that
 indirection is required. This will cause the CondAct to use
 the contents of the flag specified by the parameter as the
 actual parameter. e.g. (assuming flag 100 contains 9):-
 SETCO 12 ; Sets the current object number to 12
 SETCO [100] ; Sets the current object number to 9

Valid CondActs are summarised below. Details of their action is
included in the description of the interpreter:-

Conditions

AT locno ADVERB adverb
NOTAT locno HASAT objno attrib
ATGT locno HASNAT objno attrib
ATLT locno ISAT objno locno+
PRESENT objno ISNOTAT objno locno+

ABSENT objno PREP preposition
WORN objno NOUN2 noun
NOTWORN objno ADJECT2 adjective
CARRIED objno SAME flagno flagno
NOTCARR objno NOTEQ flagno value
CHANCE percent NOTSAME flagno flagno
ZERO flagno BIGGER flagno flagno
NOTZERO flagno SMALLER flagno flagno
EQ flagno value BIGGER flagno flagno
GT flagno value ISDONE
LT flagno value ISNDONE
ADJECT1 adjective

Actions

SFX value value MINUS flagno value
DESC locno LET flagno value
QUIT NEWLINE
END PRINT flagno
DONE SYSMESS smesno
OK SETCO objno
ANYKEY SPACE
SAVE device LISTOBJ
LOAD device EXTERN value
DPRINT flagno RAMSAVE
DISPLAY value RAMLOAD flagno
CLS BEEP value value
DROPALL PAPER colour
AUTOG INK colour
AUTOD BORDER colour
AUTOW ADD flagno flagno
AUTOR SUB flagno flagno
PAUSE PARSE
SYNONYM word word LISTAT locno+
GOTO PROCESS prono
MESSAGE mesno MES mesno
REMOVE objno WINDOW stream
GET objno MODE value
DROP objno WINAT line col
WEAR objno TIME value value
DESTROY objno PICTURE picno
CREATE objno DOALL locno+
SWAP objno objno MOUSE value value
PLACE objno locno+ GFX value value
SET flagno WEIGH objno flagno
CLEAR flagno PUTIN objno locno
PLUS flagno value TAKEOUT objno flagno

NEWTEXT
ABILITY value value
WEIGHT flagno
RANDOM flagno
INPUT stream

WHATO
CALL address
PUTO locno+
NOTDONE
AUTOP
AUTOT
MOVE flagno
WINSIZE height width
REDO
CENTRE
INKEY
EXIT value
SKIP offset8
RESTART
TAB col
COPYOF objno flagno
COPYOO objno objno
COPYFO flagno objno
COPYFF flagno flagno

Notes:
 a) flagno & value are in the range 0-255.
 b) percent is in the range 1-99.
 c) objno must be defined in OTX.
 d) mesno must be defined in MTX.
 e) smesno must be defined in STX.
 f) prono must be the number of a process table.
 g) locno must be defined in LTX.
 h) locno+ must be defined in LTX or be 252-255 or the null word
 character 'WORN', 'CARRIED' or 'HERE'.
 i) adjective must be an adjective in the vocabulary or the null
 word character.
 j) adverb must be an adverb in the vocabulary or the null word
 character.
 k) preposition must be a preposition in the vocabulary or the
 null word character.
 l) noun must be a noun in the vocabulary or the null word
 character.
 m) 'stream' is a valid window/stream 0-7
 n) line,col,height & width are not range checked in the
 compiler as the interpreters clip to fit screen as required.
 o) offset8 is a skip distance from -127 to 128, which specifies
 an entry to jump to. If a local label is specified then the
 distance is calculated auomatically.

 5.2 The pre-processor commands

All preprocessor commands are preceeded by a hash or gate charac#
ter ('#') except for LNK. They have to occupy a line of their
own. Generally they can be placed almost anywhere, although it
may not be appropriate or useful!

/LNK {w-s} filespec

A line starting with /LNK may appear anywhere in the source file
and it forces the Compiler to switch to a different source file.
Note that everything following the /LNK statement in the current
file is ignored.

eg
/LNK srcfile2 will switch to SRCFILE2.SCE

/LNK x:\game\common\psi.inc will switch to PSI.INC on drive X

Compare this with #include which returns to the original file to
continue compilation when the new file terminates.

#INCLUDE filespec

Will switch the compiler to use the specified source file. At the
end of the file the compiler returns to the line after the
#include in the original source file. Includes may be nested to a
depth of 10. This allows included source files to include further
files that they require and so on to a depth of 10.

#DEFINE symbol expression

Define the case sensitive label (maximum of 20 chars at the
moment) to have the value given by expression. This can consist
of other symbols, numbers and the addition (+) or subtraction (-)
operators. The symbols can usually be used anywhere a number is
required along with fixed numbers and the operators. This does
not apply to IF statements which accept a single symbol only.

Note that as the compiler is single pass you must define all
symbols before you use them. This does not apply to local symbols
(those preceeded with a $) as detailed elsewhere.

Once a symbol has been defined an error will result if you
attempt to define it again. If you need to do this use the #var
command.

The compiler defines several symbols automatically. It assigns a
non-zero (TRUE) value according to the command line options:-

From the 'm' machine option.
opt symbol
0 PC

1 SPE
2 CBM64
3 CPC
4 MSX
5 ST
6 AMIGA
7 PCW
The following symbols are given a non zero value by machine
options 8-12. Note that the relevant symbol from the above list
is also non zero.
opt symbol machine symbol
8 VGA PC
9 EGA PC
10 CGA PC
11 S48 SPE
12 SP3 SPE

The 'l' language option generates a non zero value for one of the
following symbols:-
0 ENGLISH
1 SPANISH

The 'd' debug option sets as true (non-zero) the symbol 'DEBUG'.

If the 'm' option selected a machine which has PLOT,FILL and DRAW
graphics - at the moment this is SPE,CBM64,CPC and MSX - the
symbol 'DRAW' has a non-zero value.

C42,C40,C53 - true (non zero) if the 'm' machine features this
number of columns on the screen. n.b. on ST and IBM it is
possible the game is running in text only 80 column mode, so you
may need to use the COLS symbol in calculations.

COLS - Actually contains the number of columns as a number. This
can be used in compile time calculations (or run time if it is
assined to a flag by LET flag COLS).

The files SYMBOLS.* can be included in your compilation. They use
the #define directive to define many more symbols. The use is
explained in those files.

#VAR symbol expression

This is similar to the #define command but it redefines a symbol
which has already been defined. This has a use in counting the
use of an item in a file or conditional compilation etc.

#IF {!}symbol
{#ELSE}
#ENDIF

This group of commands will occur together. Note that the ELSE is
optional. Any lines following the #if (up until the next #else or

#endif) will be included in the compilation only if the symbol
has a non zero (TRUE) value.

Additionaly any symbol can be rendered FALSE using an exclamation
mark/pling ("!"). e.g.

 #if !DRAW

will be true if on a machine which loads its graphics from DISC
in a pixel based format!

The #else causes the lines between it and the next #endif to be
compiled in the opposite case to the original #if test. This is
not a duplicate of the function of the exclamation mark as you
will often not need to do anything if the symbol is not true. In
this case you would use the exclamation mark to negate the symbol
rather than an empty #else#endif clause.

You cannot use an expression in place of the symbol. If you need
to test for a group of conditions then use a #define to set up a
temporary label. e.g.

 #define COL53DISC DISC+COL53
 #if COL53
 ...
 #endif

will compile the lines between the #if and the #endif only if we
are on a 53 column disc machine!

These conditional statements can be nested to a depth of 10,
during the entire compilation.

All data inside #IF,#ELSE,#ENDIF must be indented by the correct
number of spaces, one space for each nest level. This does not
apply to files included using a #include within a conditional
block. Any exception to this will cause a 'Fatal loss of
conditional nesting sync' error.

There must be a corresponding #endif for every #if or some
strange effects may occur, such as the compiler ignoring the
remainder of the source file!

The following gives an example of the use of conditional
compilation to deal with differences between machines and modes
on that machine. Note the indentation at each #if level.

 #if PC
 CLS
 PAPER 0
 #if EGA
 INK 15
 #else
 INK 7
 #endif
 #endif

#ECHO

Output text to the console during compilation - usually to
indicate titles and the inclusion of a file with conditional
options.

e.g.

 #if PC
 #echo Including IBM Display handler
 #include \LIB\PCDISP.SCE
 #endif

#LOOKUP lang

Causes the compiler to search the specified language dictionary
for the Verb & Noun of Process table entries. This allows you to
have a process table written in one language to be compiled into
a game written in another language. This must be combined with a
multi-language vocabulary. See the section on multi-language
games.

The valid values of 'lang' are 0 for English or '1' for Spanish.
They may be assigned to symbols if required.

The following are several pre-processor commands designed mainly
to deal with external data and code. Further explanations are
given in the document on external code inclusion.

#INCBIN filespec

Will include a memory image file at the current position in the
database. This alows just about any type of data to be included
in the database segment.

#DEFB expression {{{expression} expression}...}

Will include the indicated byte value(s) in the database at the
current address. For example:

 #DEFB 1 2 3 4
 #defb PSIFLAG-1 PSILAST-PSIFLAG

#DEFW expression {{{expression} expression}...}

Will include the indicated word value(s) in the database at the
current address. For example:

 #defw 6578
 #defw IOADDR+4 65535

#defb/w commands may be used in preference to INCBIN if you need
to include only a few values or ones that are calculated from
symbol values.

#HEX hexpair{{w-s}{hexpair}...}

Will include direct hex data in the db. This is similar to the
HEX statement of PDS. There must always be an even number of hex
digits, even if you seperate elements with whitespace. For
example:

 #hex FFDE7898
 #HEX 00 89 FD F3

#DBADDR symbol

Will give symbol the current address in the database. This can be
used for CALL, #userptr or #defw commands.

#USERPTR n

Where n is from 0-9.
This command is designed to overcome the forward reference
limitation of the single pass compiler. It places the current
database address in one of ten vectors whose position is fixed at
the start of the database. Thus an external routine can locate
inserted data in the database by looking at the fixed vector.

#EXTERN {filespec}
#SFX {filespec}

For 8 bit only. These three commands are similar to #USERPTR, but
the value stored by them is copied by the interpreter on database
load to the corresponding EXTERN vector. Note that SFX already
has a default effect of writing to the sound chip registers. So
any routine using this vector will replace this function. The
EXTERN.SCE file uses EXTERN to achieve the sound so that the SFX
command continues to function.

Now any EXTERN or SFX commands will be directed to your routine.

The interpreters recognise 3 external vectors. The third is for a

50Hz interrupt:-

#INT {filespec}

For 8 bit machines only. Any routine placed on this vector will
be called 50 times a second for the entire period that the game
is running. Thus there is no command in the DAAD language to call
the routine. The Z80 ones save only the AF and HL registers (as
HL is given as your address), so be sure to save any other
registers you use. The 6502 interpreters save the entire
processor state.

If you include the filename in the #EXTERN, #SFX or #INT commands
then it will cause the given file to be included in the database
- as if the command was followed by #INCBIN.

 Section 6 - The Compiler

The compiler allows the use of full pathnames for Source, Desti#
nation and Print filenames. Several options are added which are
introduced with a minus ("-") sign. The command line format is...

 DC infile outfile {-c|l?|s|m?|n|d|t|pprnfile} {-w|h|a?}

c - Apply compression to text (except objects)
l - Language, where ? is 0 or 1
 0 - English
 1 - Spanish (default)
m - Machine, where ? is 0 to 12
 number symbol in source file
 0 - IBM PC(default) PC
 1 - Spectrum SPE
 2 - CBM 64 CBM64
 3 - CPC CPC
 4 - MSX MSX
 5 - ST ST
 6 - Amiga AMIGA
 7 - PCW PCW
 ;These symbols allow special versions to be generated
 8 - PC VGA VGA
 9 - PC EGA EGA
 10 - PC CGA CGA
 11 - Spectrum 48K S48
 12 - Spectrum Plus 3 SP3
n - No output file
d - Include DEBUG sections
t - Write a token scan file called FINDTOK
p - Specify file for text output (except major errors)
s - Give symbol table

the second group of options can only be used with m0 and are for
system use only. You should never need to use them unless in#
structed by Infinite Imaginations.

 Detailed Description of the Compiler

The Compiler has been specially designed so that it does not stop
as soon as it finds an error. The processing is as follows:-

 Process the command line.
 If any errors found stop.
 Open the print file .PRN (if required)
 Process CTL
 if no errors found open the database file .$$$ (if required)
 if no errors found process VOC, STX, MTX, OTX & LTX
 if no errors found process CON, OBJ & PRO
 if no errors found process the end routines.
 Print Compilation ends OK
 or Compilation ends with n WARNING(S)
 or Compilation ends with n ERROR(S)
 or Compilation ends with n ERROR(S) and n WARNING(S)

 Errors and Warnings

Compiler WARNINGS

Anything that is a warning will not stop the database being
produced, but the interpreter may find some of the codes a little
strange, or jump to the wrong entry for symbol warnings.

There are 10 types of warnings that can be issued:-

 1) Token is longer than a previous token

 The tokens should really be in order of size

 2) Token contains char >127 - Value(n)

 The Compiler has found a character with value n (128-255
 decimal). These values are used for storing the tokens so
 cannot be used in a token.

 3) ESCAPE code expected

 You have included a backslash ("\") in a token or piece of
 text and not followed it with a character. This will normally
 only occur at the end of the line. The \ is ignored.

 4) ESCAPE code invalid

 The character following a backslash ("\") is not a valid
 token. See the source file syntax for a full description of
 legal ESCAPE codes. The code is ignored - this will usually
 mean the loss of a letter from the text.

 5) Control character present in text - value(n)

 The Compiler has found a character with value n (0-32
 decimal). This character may confuse the Interpreter.

 6) Character value > 127 present in text - value(n)

 The Compiler has found a character with value n (128-255
 decimal). These values are used for compress tokens so
 cannot be used in the text. You will get an error instead of
 a warning if you try to compress the text with these
 characters present.

 7) Local symbol already defined: symbol

 You can only use a symbol once withing a process table. The
 sybols are cleared at the end of the table and can be reused
 in other tables.

 8) Symbol already defined: symbol

 The global symbol table already contains an entry for this
 symbol. Be careful your compilation may need scrapping if the
 symbol is important. The first definition holds.

 9) Symbol not defined: name

 A name that the compiler has assumed is a symbol is not
 defined in the global symbol table.

10) Invalid hex pair on line

 You must specify an even number if digits in #hex statements.
 The rest of the line will be ignored.

Compiler ERRORS

Whenever an error is found the line number of the source file and
the contents of the line are printed when appropriate, then the
error number and error reason.

In the case of errors that are marked as (fatal) the compiler
will stop and print the error to the screen, even if a print file
is active - this is not repeated in the print file so ensure you
make a note of the number!

The errors that can be found are:-

 0) Max texts already processed

 The maximum No. of texts allowed in this section have already
 been defined.

 1) Valid word not found xxxx

 Either a parameter was missing or an invalid character was

 detected. xxxx may not be present in the message.

 2) No. (1-254) not found

 A number in the range 1-254 was expected but not found.

 3) Too many parameters

 Too many parameters have been specified. Possibly the ; has
 been left out at the beginning of a comment.

 This is also caused if there is at least one PROCESS table
 which is not called at the end of the database. i.e. it will
 not detect unused process tables only unused ones at the end
 of the database.

 4) Vocab limit exceeded - VOCAB too big!

 There is a limit on the size of the vocabulary which has now
 been reached. The 'nn words processed' message which
 follows, shows by how many words your vocabulary is too big.

 5) xxxx is not in Vocabulary

 Word xxxx has not been defined in the vocabulary.

 6) Connections for all locations already processed

 Movements for all locations specified in LTX have been
 processed but the end of the CON section has not been
 reached.

 7) Location No. not found

 A location No. was expected but not found.

 8) Location No. too big

 The location No. specified has not been defined in the LTX
 section.

 9) Entries for all objects already processed

 Entries for all objects specified in the OTX section have
 been processed but the end of the OBJ section has not been
 reached.

10) Start of entry expected

 The compiler expected this line to be the start of an entry.

11) System message No. not found

 A System message No. was expected but not found.

12) Percentage not found

 A percentage was expected but not found.

13) Percentage out of range

 The percentage specified is outside the range 1-99.

14) xxxx is not a condition or action

 xxxx is not a recognised condition or action.

15) Object No. not found

 An object No. was expected but not found.

16) Object No. too big

 The object No. specified has not been defined in the OTX
 section.

17) Message No. not found

 A message No. was expected but not found.

18) Message No. too big

 The message No. specified has not been defined in the MTX
 section.

19) Flag No. not found or too big

 A flag No. was expected but was not found or was > 255.

20) System message No. too big

 The System message No. specified has not been defined in the
 STX section.

21) Value not found or too big

 A value was expected but was not found or was > 255.

22) Table limit exceeded

 The compiler has an area of memory which it uses for 2
 things. Firstly it has to store all of the vocabulary in it
 (7 bytes for each word). Then whatever remains is used as a
 work area for processing this table (4 bytes for each entry).

 This area of memory is now full! The 'nn entries processed
 successfully' message which follows, shows by how many
 entries this section is too big.

23) /nn expected

 The next entry expected should start /nn.

24) (fatal) Invalid File Name

 The file name in the command line, /LNK statement or #include
 contained some invalid characters.

25) Drive A-P not found

 A drive identifier in the range A-P was expected but not
 found.

26) Object starts worn but is unwearable

 If an object starts the game worn then it must be wearable.

27) Invalid null word character

 An invalid character has been specified as the null word
 character. We suggest that only '_' should be used anyway!

28) (fatal) Adventure Name not given

 An adventure name could not be found in the command line.

29) (fatal) Invalid drive x

 An invalid drive was specified.

30) Parameters missing

 A parameter was expected but has not been supplied.

31) Insufficient System messages

 System messages 0-60 must be specified.

32) Connections for remaining locations missing

 You must specify connections for every location specified in
 LTX.

33) Entries for remaining objects missing

 You must specify a definition for every object specified in
 OTX.

34) Unable to open xxxx

 The database file xxxx could not be opened. eg Disk
 directory full.

35) Failure to rename xxxx

 The database file .$$$ could not be renamed to .DDB

36) Duplicate word xxxx

 The word xxxx has been defined twice in VOC. Remember that
 only the first 5 characters are significant.

37) xxxx not found

 The source file xxxx could not be found.

38) Database not correct length - Disk may be full

 The compiler has checked the actual length of the database on
 disk with the length it thinks it should be, if it is shorter
 then ther was probably insufficient disk space for the
 database.

39) Illegal use of Flag 38

 You have specified an illegal use of Flag 38 eg SET 38,
 LET 38 x - where x is greater than the No. of locations.

40) A container needs a corresponding location

 For an object to be a container there must be a location with
 the same No. as the object.

41) xxxx expected

 The next section expected should start with xxxx.

42) Valid word type not found xxxx

 xxxx is not a valid wordtype.

43) Object weight not found

 An Object weight was expected but not found.

44) xxxx is not a(n) yyyy

 A particular wordtype (yyyy) is expected here but xxxx is not
 that type.

45) Adjective specified without noun

 To specify an adjective you must also specify a noun.

46) /PRO nnn expected

 The next section expected should start with /PRO nnn.

47) Process table No. not found or too big

 A Process table No. was expected but was not found or was >
 255.

48) Process table No. out of range

 In the PROCESS action only Process table Nos from 2 to 254
 are allowed.

49) You can only PUTIN to or TAKEOUT of a container

 You are trying to put an object into something which is not a
 container or you are trying to take an object out of
 something which is not a container.

50) Wearable indicator not found or invalid x

 A 'Y' or the nullword character was expected but not found.
 x may not be present.

51) Object weight too big

 Object weights must be in the range 0-63.

52) Container indicator not found or invalid x

 A 'Y' or the nullword character was expected but not found.
 x may not be present.

53) Character value > 127 present in text - value(n)

 The Compiler has found a character with value n (128-255
 decimal). These values are used for compress tokens so
 cannot be used in the text. You cannot compress text which
 has these values in it.

54) Database much too big

 The database is so big that it has wrapped around from 65535
 to 0!

55) Stream not found or too big

 The WINDOW stream was not in the range 0-7.

56) Line not found or too big

57) Column not found or too big

58) Height not found or out of range

59) Width not found or out of range

60) *** Not used

61) Input option not found or out of range

62) Colour not found or out of range

63) Already processed 128 tokens

 You have more than 128 tokens in the /TOK section. This can
 occur if including a TOK file which contains an extra /TOK at
 the start.

64) Insufficient tokens found

 Opposite of 63!

65) Token is too long

 A token must be less than 9 characters.

66) Token is too short

 A token must be greater than 2 characters.

67) (fatal) Invalid option 'opt'

 The option given on the command line is invalid.

68) (fatal) Bad/Missing parameter for option 'opt'

 The parameter for the option is out of range or missing.

69) (fatal) Too many files specified

 You should only specify a maximum of two filenames on the
 command line (except for the PRN file which is specified
 using -p).

70) Invalid compiler command

 The preprocessor (#) command is not recognised.

71) (fatal) Symbol table full

 Thats it folks, the symbol table is of a specific size.

72) (fatal) Maximum conditional nesting exceeded

 You can only #if a maximum of 10 times in any file.

73) Imbalanced conditional

 A #endif was found without a preceeding #if.

74) (fatal) Fatal loss of conditional nesting sync

 You must include at least the same number of spaces in front
 of every line as the depth of the conditional block the are
 contained in.

75) Can't indirect this parameter

 You have attempted to indirect the second parameter of a
 CondAct or the first one of the few that don't support
 indirection.

76) Missing bracket on indirection

 The compiler thinks you have missed the closing bracket ']'
 on an indirected parameter.

77) (fatal) Maximum include nesting exceeded

 You can only nest the #include statement upto 10 times.

78) Symbol not found, or invalid

 The symbol was not found in the global symbol table.

79) Not enough user attribute indicators found

 You must specify 16 user attributes (even if null) for every
 object in the game.

80) User attribute indicator invalid 'attrib'

 The character must be 'Y' to set a user attribute.

81) Unresolved forward references on line(s):

 You have done a SKIP to a local symbol which was subsequently
 not defined. Note that this error is given at the end of the
 process table to which it refers. Due to the operation of the
 compiler it is not feasible to print the line affected, only
 its line number.

82) (fatal) Forward reference data cache full, increase it

 The internal memory area used for forward references has
 filled up. Try and reduce the nesting level of forward SKIPS,
 or if all else fails contact Infinite Imaginations to get the
 buffer size increased.

83) Maximum forward references, reduce nesting or quantity

 Similar to the above but you have reached the limits. The
 same applies as to error 82.

84) Out of forward reference index space, increase it

 See references to 82 and 83.

85) Backward SKIP out of range

 The maximum reverse skip is -128 entries.

86) SKIP label illegal within an entry

 A local ($) label can only occur between entries. This
 implies that it must come after the blank line which ends the
 previous entry. In fact the best place is on the line
 immediatly preceeding the next entry.

87) Forward SKIP(s) to this label out of range

 The maximum forward skip is 127 entries. There is at least
 one SKIP to this label that is outr of range. The only easy
 remedy is to search forward in the file for references to the
 symbol and remove the first (or first few if they are
 obviously also out of range), as this is the furthest away!

88) (fatal) Internal fri error, patch code not SKIP

 An illegal skip patch has occured. This will happen only if
 the internal compiler tables become corrupt, save the .SCE
 file and report it to Infinite Imaginations.

89) Language specifier not found or invalid

 You have not specified a language for the #lookup command

90) Vector already defined

 The user vector has already been allocated.

91) (fatal) Size exceeds cache space

 The process table has become too big, try and reduce it by
 splitting into sub-process'.

92) (fatal) Error reading file

 A disk error has occured during compilation.

93) Can't include binary data in this section

 You have attempted a #incbin or one of the commands that
 include data in a compiler section which doesn't allow it -
 e.g. in /VOC

94) Invalid address

 You have specified an address not in the nummeric range 0-
 65535.

95) Invalid user vector number

 The user vector number is not in the range 0-9.

96) Can't open file FINDTOK.TXT for write

 The compiler can't open the file 'FINDTOK.TXT' for writing.
 This might occur if the directory is full or the file exists
 with the 'read-only' attribute set.

nn) Compiler error nn

 There is an error within the compiler. More specifically
 one of the internal checks within the compiler has failed.
 Firstly try re-compiling your adventure. If it fails a
 second time, try again using your backup copy. If all else
 fails contact us!

 Section 7 - Graphics

There are two groups of graphics editors:

1/ Drawstring

All versions are very similar in operation and will be discussed
together.

2/ Image

These are more graphics/data managers as they do not include any
way of editing graphics (or in the latest edition sounds) as
such, but use images from an Art Package.

 7.1 Drawstring Editors

We suggest that you should be familiar with the Spectrum PAW
graphics option, CPC and CBM 64 Illustrator. The DAAD editors are
very similar.

7.1.1 Main menu

A - Graphics Allows graphics to be inserted, amended,
 printed etc.

B - Characters Allows characters to be inserted, amended etc
 the characters double as shade patterns and as
 single characters for creating detail

C - Windows Sets up the windows that the graphics will use
 when running in the final game.

D - Text Colours Sets what actual Colours the 16 DAAD colours
 look like and the colour of the screen border
 - for the final game

E - Set SPARE Sets up the first byte available for graphics
 in memory. When the compiler has compiled a
 game, it gives an end address for the
 database. Type this in on this option and the
 F option will then correctly maintain your
 free memory. Note that the compiler must be
 compiling for the same machine as you are
 setting it on! Note you can set this at any
 time. I.e. you can write the game and graphics
 seperatly.

F - Free Memory Once option E has been used will give an
 indication of the amount of free memory
 available.

G,H,I & J Fairly obvious functions described below:

Spectrum

SAVE Graphics
Equivalent to the BASIC command SAVE f CODE m,n where m is the
start address of the database, n is the length and f is the
filename.

VERIFY Graphics
Equivalent to the BASIC command VERIFY f CODE m,n

LOAD Graphics
Equivalent to the BASIC command LOAD f CODE, i.e. it will load
any file of bytes back to the address it was saved from.

Very Important
If BREAK is pressed or a tape error detected during a load then
the database held in memory would be corrupt. If CAPS SHIFT & 6
is pressed while a name is requested the graphic database will be
unaffected.

Amstrad CPC

Disc/Tape
For those with both a disc drive and tape deck. Allows you to
choose between them for Save, cat etc.

SAVE & LOAD Graphics
These options allow the graphic database to be saved or reloaded
and in each case you will be prompted to "Type in name of file".
When loading, the computer will search for a file of bytes with
the name specified and then load it. A null filename may be used
when you are using tape but not with disc. Care should be taken
when using Load Graphics with a null filename because it will
load any binary file it finds. LOAD will load any binary file
back to the address it was saved from. e.g. you would use 'E' to
load an SCDUMP routine.

Very Important
If ESC is pressed or an error detected during a load then the
database held in memory would be corrupt, so a call is made to
set a minimum database. This means your graphics will be lost,
but you haven't corrupted the database and can use any option
available. If ESC is pressed while a name is requested the
graphic database will be unaffected.

CAT
Can be used to catalogue a tape or disc in the same way as from

BASIC.

Commodore 64

Save, Verify & Load Graphics

These options on the Main Menu allow the graphic database to be
saved, verified or reloaded and in each case you will be prompted
"Disc or Tape?" reply D or T as required and "Type in name of
file". When loading, the computer will search for a file of
bytes with the name specified and then load it.

Very important
If RUN STOP is pressed or an error detected during a load then
the database held in memory would be corrupt, so a call is made
to set a minimum database. Result: one blank location! This means
your graphics & shade patterns will be lost but the database is
not corrupt and can use any option available. If RUN STOP is
pressed while a name or media is requested the graphic database
will be unaffected.

7.1.2 Graphics Menu

Pictures may be inserted, amended, printed or have their length
calculated:-

Insert I

The next available picture number is used and a null entry is
made for it in the picture table. An entry of is also made for
it in the location flag table. Processing then continues with an
automatic call to the amend routine to allow the user to amend
the null entry already set up in the picture table.

Amend A picno.

The graphic database is expanded to provide a gap at the end of
the required picture. The main loop of the Graphic Editor
described below is then entered. When return is pressed any gap
still remaining is removed. n.b. the database itself is changed,
thus you cannot abandon an edit.

Size S

The number of bytes between the start of the drawstring and the
start of the next is calculated and printed on the screen.

Print P picno. or L picno.

The required picture is drawn on the screen and if L was selected
the SCDUMP routine is called. picno. must be specified.

Points to note:

* There is a limit of 254 pictures.

Spectrum

* Locations which are subroutines have PAPER 1, INK 7 as start up
 colours.

Amstrad CPC

* Locations which are subroutines use INKS 1,24,18 & 26 as start
 up colours.

* Due to the variety of printers/plotters available the SCDUMP
 subroutine provided saves the screen to disc/tape with a
 filename of PICxxx. This file may be reloaded from BASIC
 and you may then use any of the published or commercially
 available screen dump routines to produce a hard copy.

 Alternately the address of the machine code SCDUMP subroutine
 is given on the start up screen. If you wish you can write
 your own printer driver and patch it in using the Load Graphics
 option on the Main Menu. The subroutine should end with a RET
 instruction, it should preserve all registers, it should not
 exceed lK bytes and obviously it should not 'mess up' the
 firmware.

Commodore 64

* Locations which are subroutines use PAPER 6 as a start up
 colour.

* SCDUMP is a routine which will copy the hires screen to the
 printer. You can if you wish change the routine to use a
 different printer by creating a file (max 1000 bytes) at the
 address given on the title screen, and loading it in using LOAD
 Graphics.

Dump D

Copies the picture specified to tape or disc as an 8K Hires
screen (Saved from $8000 hex) followed by a 1K Colour screen
(Sved from $CC00 hex) under the filename specified, but preceded
by a B & C respectively - these could be used in your own
programs, the programmers guide gives details of using a normal
hires screen from BASIC.

Notes for ILLUSTRATOR/PAW users.

ALL versions
* Subroutines now can be rotated about either the X or Y axis to
 provide the mirror function.

* Shade cannot mix patterns, but can use any graphic characters
 upto the 256 maximum.

CBM & CPC
* Subroutines can now be nested to a depth of ten as on the
 Spectrum
* There is no Freehand option
* The CTRL & C (CTRL & T on CPC) allows single graphic characters
 to be placed on screen at the Base Cursor to add detail to
 pictures.

CBM
* The Help function on H is still available despite the
 Spectrum/CPC not having one!
* Do not draw 'off' the bottom of the screen, this will corrupt
 the bottom two text lines in the interpreter as it does not use
 a split screen like the editor.

7.1.3 Characters Menu

This option allows the standard 256 characters (described
elsewhere) to be amended, saved loaded etc.

The Save and Load options allow an arbitrary size collection of
characters o be manipulated. E.g. You could load a standard PAW
character set merely by doing L 0, to load to character 0. This
facility as well as allowing useful characters to be transferred
between databases can also be used to move them around in the
set. E.g. S 10 14 followed by a L 20 would, via the disc, move
characters 10,11,12,13 & 14 to be characters 20,21,22,23 and 24!

The character editor

This section of the editor allows a shade pattern/character to be
amended. Shade patterns consist of an 8 by 8 pixel grid (8 by 4
on CPC) which is repeated by the SHADE command over the entire
area of shade. Characters can be placed on the screen from within
the drawstring. They are obviously displayed by any text output
in a game.

The editor provides three areas of screen:-

1/ The Grid The bit patterns of a particular shade are shown
 on a much enlarged (x8) grid of grey squares, any
 set bits being shown by a black square. Also
 present on the grid is a flashing red square
 showing the current cursor position.

2/ The Test To the right of the Grid is a test pattern of the
 Pattern current shade in both normal & Inverted forms.
 (Normal on top). This does not change as you
 change the Grid but it can be updated by presssing

 F7.

3/ Status This shows the current pattern number and gives a
 Area summary of the commands available.

Commodore 64

In order to modify the pattern use the cursor keys (marked CRSR)
along with SHIFT as necessary to move the flashing cursor. The
state of the bit under the cursor can be changed at any time
using the SPACE BAR.

RETURN will store the amended pattern back in the database.
RUN STOP will abandon the edit leaving the pattern as it was.

Amstrad CPC

Unless you understand the method the CPC uses to code four colour
mode characters then only use characters you have edited in shade
mode for the SHADE command.

7.1.4 Window Menu

Can be used in one of three ways:

A picno

Will set the given picture to be a subroutine - I.e. not having a
picture

A picno paper ink

Will give picture picno the given paper and ink to start drawing
with.

A picno paper ink line column height width

Will give picture picno the given paper and ink and define an
area of the screen which will be cleared by the interpreter when
drawing this picture. Note that the Grid option when editing a
graphic will highlight only this region.

Spectrum

On the Spectrum this area may not be what you expect as the
windows are set in 40 column mode, so the grid shows the closest
fit on the 32 column attributes. You could consider this useful
as it shows what actual area of the screen is occupied by the 40
column window. If you draw outside of the window, it will still
show up during the game it will just be outside the window! I.e.
DAAD does not 'clip' its graphics. See the note under CBM as well
for a similar problem.

7.1.5 Text Colours

This option sets what actual machine colours the interpreter will
use when it uses the INK and PAPER CondActs. This is so that the
writer of the database does not need to worry about the different
colour numbers on various machines. I.e. In the versions you have
so far DAAD colour 0 is always BLACK, colour 1 is always WHITE
and colour 2 is always RED. Despite the fact that white and red
are different colour numbers on the CBM and SPECTRUM.

Amstrad CPC

* The text colour option on the CPC sets the initial Pallette for
 the start of the game. Any part of the pallette can be
 selectivly changed for each picture drawn at a location. But
 you are stuck with the current pallette for those drawn using
 PICTURE. This is no strain as there are only four colours
 available, so character faces etc should use the fixed bit of
 the pallette used by text, or the look will change! See the
 note on ST/Amiga pallette management.

7.1.6 Basic Operation

When editing, the string is laid out in memory as follows;

 | END | The end of string marker
 |-----------|
 | |
 | NEXT | Any commands still undrawn
 |-----------|
 | |
 | |
 | |
 | SPARE | Available memory
 |-----------|
 | TEND | Temporary end marker
 |-----------|
 | |
 | |
 | |
 | DRAW | The main draw string

It is important when using the editor to imagine the above model.
You will find otherwise that it is easy to step back through the
drawstring leaving undrawn commands in the NEXT section. These
can get 'out of context' and when drawn either on re-editing or
using Next commands may cause a screen error.

7.1.7 Spectrum Graphic Editor

A rubber banded line is used for drawing; the base point of the
line (Known as 'point') shows the last point plotted, moved to
etc, the rubber banded end of the line shows the next position of
point or the start point for a fill/shade etc.

The Editor provides four groups of commands. Any which insert a
command into the drawstring require the SYMBOL SHIFT key to be
held down;

1) Drawing Commands

ABS MOVE A Moves point to the x,y position of end of the line
 setting only the attributes. This is coded as a
 PLOT with Inverse and Over set on.

PLOT P Sets the pixel at the end of the line according to
 Inverse and Over, then moves point to that
 position.

REL MOVE R Moves point to the end of the line without
 affecting the screen. This is coded as a relative
 offset from the old point.

LINE L Draws (or fixes) a straight line from point to the
 end of line according to Inverse and Over, then
 moves point to end of the line. The line is coded
 as a relative offset from the old point.

FILL F The area from the end of line (relative) is filled
 using solid pixels. Fill works by passing a
 pattern to the SHADE routine so the notes on SHADE
 apply also

All the above use 3 bytes in the database.

SHADE S The area from the end of line (relative) is shaded
 with one of a large number of patterns. The
 database contains 256 characters, which can be
 changed using the Character Editor.

 The pattern used for shading is determined as
 follows:-
 a) You are asked for a pattern number in the
 range 0 to 255.
 b) If INVERSE was 'on' the resultant pattern is
 inverted, i.e. SET/RESET pixels are swapped.

Note 1. The shade first works in a downward direction and then in
 an upward direction. For speed, when it is going down it
 doesn't look up and vice versa. Any areas the shade

 misses must be shaded separately, although careful choice
 of the start position for the shade will minimise this.

Note 2. If the area to be shaded is too complex then the shade
 will be abandoned. It has to do this to enable it to
 detect when it comes across an area which has already
 been shaded. Thus an area can only be shaded once as an
 already shaded area will be too complex to shade again.
 You should not shade an area and then try to fill in the
 background with a fill command, use the Inverse option!

TEXT T A character code in the range 0 to 255 is
 requested. This character is placed on screen in
 the character square (as shown by the Grid
 command) that the tip of line is contained within.
 It is mainly designed to allow "the fiddly bits"
 of as picture to be drawn using the character
 editor - thus using less memory than lots of
 lines!

Text and Shade use 4 bytes in the database each.

BLOCK B Causes a block of the currently selected colours
 to fill the rectangle of attribute squares which
 the line defines the diagonal of.

Block uses 5 bytes in the database.

2) Colour Commands

INK X The current ink is set to the value selected. INK
 8 as in BASIC causes all ink to be taken from the
 existing screen attributes.

PAPER C Sets the current paper to the value selected.
 PAPER 8 as in BASIC.
FLASH V The new value of Flash is requested (0,1 or 8).

BRIGHT Z The new value of Bright is requested (0,1 or 8).

all the above use one byte in the database.

INVERSE I The state of Inverse (on/off) is toggled.

OVER O The state of Over (on/off) is toggled.

Neither Inverse nor Over use any memory but their state is
encoded as part of each future instruction which is affected by
them.

3) Subroutine Command

GOSUB G A picture number is requested which must be in the

 range 0 to locno. A scale value for the picture is
 then requested. This can be from 0 to 7 where the
 number indicates the size of the picture in
 eighths - 0 means 'no scale' (i.e. 8/8).

 You are next asked if you wish to rotate the
 design about wither the X, the Y or both axis.

 Please Note;

 a) Scale only affects certain commands, these are
 MOVE RELATIVE,LINE,FILL and SHADE. MOVE ABSOLUTE,
 PLOT, BLOCK and TEXT commands will not be scaled
 or relocated and should generally not be used in
 subroutines (although they will work and can be
 used usefully sometimes).

 b) You may only nest subroutine calls to a level
 of ten. (nesting means calling a subroutine from
 within a subroutine).

 c) Scale does not affect GOSUB commands, i.e. if a
 GOSUB is used within a subroutine the string drawn
 will be at a fixed size and not scaled.

 d) Calling the same routine you are drawing will
 cause a "Limit Reached" error as the limit of 10
 subroutine levels will have been reached.

Gosub uses two bytes in the database.

4) Editing commands

START Puts the Drawstring pointer at the start of the
 drawstring.

NEXT Executes next available drawstring command: if
 there isn't one the command is ignored.

PREVIOUS Moves the drawstring pointer back one command and
 updates the screen.

DELETE (CAPS SHIFT & 0 on 48K) deletes the previous
 command in the drawstring and updates the screen.

DELETE NEXT GRAPH(ICS) (CAPS SHIFT & 9 on 48K) deletes the
 next command if there is one.

GRID Y Has a toggle action for a character grid of INK 0,
 PAPER 7 and PAPER 6. This allows exact positions
 of colour boundaries to be taken into account
 while drawing.

JOYSTICK J Toggles the Kempston~ joystick option on and off.

The keys around S move the end of line around one pixel at a time
(this can be accelerated to eight pixels a time by holding down
the CAPS SHIFT key) thus:

 Q W E

 A D

 Z X C

The joystick should be plugged into Port 2 of Interface 2 or the
Spectrum Plus 2. Alternatively it can be plugged into a Kempston~
interface in which case SYMBOL SHIFT & J should be used to enable
DAAD to read it. CAPS SHIFT will also accelerate the rate of
movement on the joystick. The Fire button will act like SYMBOL
SHIFT and L to draw a line.

Spectrum Editor Error Messages and their meanings

BREAK BREAK was pressed during a peripheral
 operation.

STOP in INPUT CAPS SHIFT & 6 pressed.

Tape loading error as BASIC. Note that a tape error during
 a load database means that the database
 is corrupt and only reloads should be
 attempted.

Database full There is not enough room in the database
 for what you were attempting.

Limit reached The maximum number of graphics, or pages
 are already present. Alternatively the
 maximum subroutine depth has been
 reached - 10.

Integer out of range While drawing a picture a LINE command
 has gone out of range. This is usually
 due to a change of position of the
 starting point while editing.

Out of memory This occurs when attempting to start a
 new RAM page on a 48K spectrum, loading
 a 128K game on a 48K spectrum or if

 insufficient workspace has been left
 e.g. by setting up fixed channels before
 loading or by writing too big a program
 for use with EXTERN.

Note: After an error during editing of a drawstring; the
Drawstring pointer is positioned just before the command which
caused the error (i.e. a NEXT command will cause the error
again). If you are unable to correct the problem then DELETE
NEXT can be used to delete the erroneous command. Note that this
may still leave further commands undrawn (which may cause another
error).

7.1.8 Amstrad Graphic Editor

A two cursor system is used for editing; the Base cursor shows
the last point plotted, moved to etc, the Rubber cursor shows the
next position of the Base cursor or the point for a fill.

The Editor provides four groups of commands;

1) Drawing Commands

PLOT P Sets the pixel at the position of the Rubber
 Cursor (RC) according to the current Pen then
 moves the Base Cursor (BC) to that position. The
 position plotted is an absolute position and only
 positions on the visible screen can be plotted.

MOVE M Moves BC to RC without affecting the screen. This
 is coded as a relative offset from BC.

MOVEA A Moves BC to RC without affecting the screen. The
 position moved to is an absolute position and must
 be on the visible screen.

LINE L Draws a straight line from BC to RC according to
 the current Pen, then moves BC to RC. The line is
 coded as a relative offset from BC.

FILL F The area below RC (relative) is filled using the
 current pen. Fill works by passing a pattern to
 the SHADE routine so the notes on SHADE apply
 also to FILL.

All the above use 3 bytes in the database. Relative distances
are limited to #+# 1022 in the X direction and #+# 510 in the
Y direction.

SHADE S The area below RC (relative) is shaded with one of
 a large number of patterns.

 The pattern used for shading is determined as
 follows:-
 a) You are asked for a pattern number in the
 range 0 to 255. This corresponds to a character.
 b) Any Ink 3 in the resultant pattern is changed
 to the current Pen. (If the current Pen is Pen 3
 then this has no effect).
 c) If SHIFT S was pressed you are asked for a
 colour number and the resultant pattern has
 background (INK 0) pixels set to that colour.

Notes on the shade (and fill) routine:-

1) The shade first works in a downward direction and then in an
 upward direction. For speed, when it is going down it doesn't
 look up and vice versa. Any areas the shade misses must be
 shaded seperately although careful choice of the start
 position for the shade will minimise this problem.

2) The area to be shaded is defined by the ink of the start
 pixel. Any other Inks or the edge of the visible screen mark
 the edge of the area to be shaded.

3) The start point of the shade must be on the visible screen.

4) If the area to be shaded is 'too complex' then the shade will
 be abandoned. It has to do this to enable it to detect when
 it comes across an area which has already been shaded. Thus
 an area can only be shaded once as an already shaded area
 will be 'too complex' to shade again. You should not shade
 an area and then try to fill in the background with a fill
 command - Use SHIFT & S to select the correct paper.

5) N.B. The firmware line drawing routine on the 664 is slightly
 different to that on the 464 such that a line draw from A to
 B may not plot exactly the same pixels on the two machines.
 This is unlikely to cause problems but when selecting a start
 point for a shade you are advised not to go immediately next
 to any lines already on the screen.

TEXT T A character code in the range 0 to 255 is
 requested. This character is placed on screen in
 the position given by the RC cursor.
 It is mainly designed to allow "the fiddly bits"
 of as picture to be drawn using the character
 editor - thus using less memory than lots of
 lines!

Text and Shade use 4 bytes in the database.

BLOCK B The rectangle defined by BC & RC (Absolute) is
 completely filled using the current Pen. The left
 hand edge will be rounded down to start on a pixel

 which is divisble by 8. The right hand edge will
 then be rounded up so that the width of the
 rectangle is a multiple of 8 pixels. This command
 uses the firmware routine SCR FLOOD BOX so it is
 faster than FILL but much less flexible.

Block uses 5 bytes in the database.

2) Colour Commands

PEN CTRL/0-3 Changes to the Pen specified.

Pen uses 1 byte in the database.

3) Subroutine Command

GOSUB G A picture number is requested which must be in the
 range 0 to max. picno. A scale value for the
 picture is then requested. This can be from 0 to
 7 where the number indicates the size of the
 picture in eighths - 0 means 'no scale' (i.e.8/8).

 You are next asked if you wish to rotate the
 design about wither the X, the Y or both axis.

 Please Note;

 a) Scale only affects the relative commands, these
 are MOVE,LINE,FILL and SHADE. The other commands
 will not be scaled or relocated and should
 generally not be used in subroutines (although
 they will work and can be used usefully sometimes)

 b) Scale works by multiplying the relative
 distance by the scale value, dividing by 8 and
 rounding down. Thus only relative distances which
 are multiples of 8 will be scaled precisely.

 c) Subroutines can be nested to a depth of 10.
 Exceeding this will cause a 'Limit reached' error.
 If this happens, pressing any key will redraw the
 picture to just before the GOSUB, then the CLR key
 (which deletes the next command) can be used to
 delete the erroneous GOSUB.

4/ Editing commands

START Puts the Drawstring pointer at the start of the
 drawstring.

NEXT Executes next available drawstring command: if
 there isn't one the command is ignored.

PREVIOUS Moves the drawstring pointer back one command and
 updates the screen.

DELETE DEL The previous command is deleted and the screen
 redrawn.

DELN CLR Deletes the next command if there is one.

Amstrad CPC Editor Error Messages and their meanings

BREAK ESC was pressed during a peripheral
 operation or while editing, or a disc
 error occured.

I/O Error An I/O error has occured. Note that an
 error during a load Graphics will set up
 a null database.

Database full There is not enough room in the database
 for what you were attempting.

Limit reached The maximum number of pictures is
 already present or a nested GOSUB has
 been found.

Note: After an error during editing, the Drawstring pointer is
positioned just before the command which caused the error (i.e. a
NEXT () command will cause the error again). If printing then
a return is made to a menu.

7.1.9 Commodore Graphic Editor

A two cursor system is used for editing; the Base cursor shows
the last point plotted, moved to etc, the Rubber cursor shows the
next position of the Base cursor or the point for a fill.

The Editor provides four groups of commands;

1) Drawing Commands (active if CTRL held down)

PLOT P Sets the pixel at the position of the Rubber
 Cursor (RC) according to the current state of
 Inverse/Over (see later) then moves the Base
 Cursor (BC) to that position. The position plotted
 is an absolute position and only positions on the
 visible screen can be plotted.

REL MOVE R Moves BC to RC without affecting the screen. This
 is coded as a relative offset from BC.

ABS MOVE A Moves BC to RC without affecting the screen. The

 position moved to is an absolute position and must
 be on the visible screen.

LINE L Draws a straight line from BC to RC according to
 the current Pen, then moves BC to RC. The line is
 coded as a relative offset from BC. (n.b. final
 point of line is not set).

FILL F The area around RC (relative) is filled using
 solid pixels. Fill works by passing a pattern to
 the SHADE routine so the notes on SHADE apply also

All the above use 3 bytes in the database. Relative distances
are limited to #+#511 in the X direction and #+#256 in the
Y direction.

SHADE S The area around RC (relative) is shaded with one
 of a large number of patterns.

 The pattern used for shading is determined as
 follows:-
 a) You are asked for a pattern number in the
 range 0 to 255. This corresponds to a character.
 b) If INVERSE was 'on' the resultant pattern is
 inverted, ie SET/RESET pixels are swapped.

Notes on the shade (and fill) routine:-

1) The shade first works in a downward direction and then in an
 upward direction. For speed, when it is going down it doesn't
 look up and vice versa. Any areas the shade misses must be
 shaded seperately, although careful choice of the start
 position for the shade will minimise this problem.

2) The start point of the shade must be on the visible screen.
 (Although it might be below the screenbreak and thus
 invisible! This is not advised as the screen break is not in
 the same place in the interpreter)

3) If the area to be shaded is 'too complex' then the shade will
 be abandoned. It has to do this to enable it to detect when
 it comes across an area which has already been shaded. Thus
 an area can only be shaded once as an already shaded area
 will be 'too complex' to shade again. You should not shade
 an area and then try to fill in the background with a fill
 command.

CHAR C A character code in the range 0 to 255 is
 requested. This character is placed on screen in
 the character square (as shown by the Grid
 command) that the RC cursor is contained within.
 It is mainly designed to allow "the fiddly bits"
 of as picture to be drawn using the character

 editor - thus using less memory than lots of
 lines!

Character and Shade use 4 bytes in the database.

BLOCK B The rectangle defined by BC & RC (Absolute) is
 completely filled using the current Colours. This
 command is faster than FILL but much less
 flexible. (Note it does not set any pixels only
 colours).

Block uses 5 bytes in the database.

2) Colour Commands

PAPER CTRL & 0 Allows a paper from 0 to 16 to be
 selected.

INK CTRL & I Allows an ink from 0 to 16 to be
 selected.

Both INK & PAPER use one byte in the database. Note that a value
of 16 is not a colour as such but can be thought of as
transparent, ie. It causes the existing screen colours to show
through.

INK and PAPER each use 1 byte in the database.

INVERSE F3 Inverse is selected which causes the inverse bit
 of any future FREEHAND, PLOT LINE & SHADE commands
 to be set. This causes all pixels to be reset
 instead of set in the case of FREEHAND, PLOT &
 LINE and the pattern to be Inverted in the case of
 SHADE. SHIFT & F3 will reset the Inverse flag.

OVER F5 Over is selected which causes the over bit of any
 future FREEHAND, PLOT & LINE commands to be set.
 This causes any set pixels to be reset and any
 reset pixels to be set (i.e. the new state of a
 pixel is the EXCLUSIVE OR of its previous state).

Neither Inverse nor Over use any memory as their state is
encoded as part of each instruction.

3) Subroutine Command

GOSUB G A picture number is requested which must be in the
 range 0 to max. picno. A scale value for the
 picture is then requested. This can be from 0 to
 7 where the number indicates the size of the
 picture in eighths - 0 means 'no scale' (i.e.8/8).

 You are next asked if you wish to rotate the
 design about wither the X, the Y or both axis.

 Please Note;

 a) Scale only affects the relative commands, these
 are REL MOVE,LINE,FILL and SHADE. The other
 commands will not be scaled or relocated and
 should generally not be used in subroutines
 (although they will work and can be used usefully
 sometimes)

 b) Scale works by multiplying the relative
 distance by the scale value, dividing by 8 and
 rounding down. Thus only relative distances which
 are multiples of 8 will be scaled precisely.

 c) Subroutines can be nested to a maximum of 10.
 Exceeding this number will cause a 'Limit reached'
 error. If this happens, pressing any key will
 redraw the picture to just before the GOSUB, then
 the CLR key (ie SHIFT & HOME which deletes the
 next command) can be used to delete the erroneous
 GOSUB.

4/ Editing commands

START (SHIFT & CRSR DOWN) Puts the Drawstring pointer at
 the start of the drawstring.

NEXT (CRSR RIGHT) Executes next available drawstring
 command: if there isn't one the command is
 ignored.

PREVIOUS (SHIFT & CRSR RIGHT) Moves the drawstring pointer
 back one command and updates the screen.

DELETE INST (SHIFT & DEL) The previous command is deleted and
 the screen redrawn.

DELN CLR (SHIFT & HOME) Deletes the next command if there
 is one.

GRID F7 Overlays a grid on the drawing allowing the colour
 boundaries to be seen. As only one Paper & one
 Ink colour can be in each 8 x 8 pixel square some
 very clever positioning is needed to prevent
 colour clashes.
 SHIFT & F7 will remove the grid (redraws screen).

Commodore Editor Error Messages and their meanings

RUN STOP RUN STOP was pressed during a peripheral
 operation or while editing.

I/O Error An I/O error has occured. Note that an
 error during a load Graphics will set up
 a null database.

Database full There is not enough room in the database
 for what you were attempting.

Limit reached The maximum number of pictures is
 already present or a nested GOSUB has
 been found.

Note: After an error during editing, the Drawstring pointer is
positioned just before the command which caused the error (i.e. a
NEXT (CRSR RIGHT) command will cause the error again). If
printing then a return is made to a menu.

NB: The Non-Drawstring Data Managers (DMG) for PC and Atari ST
are dealt with in a separate document.

 DMG
 ===

1. Introducción:
================
Éste es el creador y editor de la base de datos con los gráficos
(y el sonido, en la versión de ST) de la aventura para los
ordenadores de 16 bits y PCW. Hay dos versiones:

ST: Admite gráficos y sonidos digitalizados. Soporta el sistema
múltiple, utilizado a partir de la Aventura Espacial, en el que
la misma base de datos gráfica (b.d.g. a partir de ahora) sirve
para Atari, Amiga y PC CGA, EGA y VGA. Las b.d.g. creadas con
este DMG deben llevar la extensión .DAT y son las que
admiten los intérpretes de PC cuyo nombre acaba en 'M' y los
de Atari y Amiga.

PC: Es la versión antigua, sólo para CGA, EGA y PCW. La b.d.g. de
CGA y la de EGA deben hacerse por separado (llevando las
extensiones .CGA y .EGA respectivamente); la de PCW se crea a
partir de la de CGA. En PC funciona en los intérpretes cuyo nombre
no acaba en 'M'. Ya que es mucho más facil hacer las b.d.g. de PC
en el Atari nosotros sólo usamos esta versión para hacer la de
PCW.

2. DMG para Atari ST:
=====================
Ya que el DMG actualiza la b.d.g. bastante a menudo, la mejor
forma de utilizar el DMG si no se dispone de disco duro es
teniendo la b.d.g en un disco ram. Éste debe ser al menos el doble
de grande que la b.d.g con la que vayamos a trabajar ya que con
ciertas opeaciones el DMG crea una copia de seguridad (.BAK).

A continuación se detallan los distintos menús y sus opciones:

2.1. Menú File

2.1.1. Open DB:
Abrir la base de datos para comenzar a trabajar con ella. Si
indicamos el nombre de una b.d.g. nuecva nos pide confirmación
antes de crearla.

2.1.2. Close DB:
Cerrar la b.d.g. con la que estamos trabajando para poder abrir
otra. Si no vamos a abrir otra no es necesario escoger esta opción
ya que Quit la cierra antes de salir al sistema.

2.1.2. Load PI1:
Carga una pantalla en formato PI1 en la memoria de trabajo.

2.1.3. Load SPL:
Carga un sonido digitalizado en la memoria de trabajo.

2.1.4. Quit:
Sale al sistema tras pedir confirmación.

2.2. Menú DB:

2.2.1. Locations:
Información sobre los datos contenidos en una localidad. En ella
podemos ver:
 -Botones << y >>: nos permiten ver la localidad anterior y
la
siguente respectivamente. Entre ellos aparece el número de la
localidad que estamos viendo.
 -Offset: si esta localidad está vacía, aparecerá la frase "no
data". En caso aparecerá un número en hexadecimal que no es de
niguna utilidad para el desarrollo de la de la aventura.
 -Copy: permite copiar este gráfico o sonido a otra localidad.
En realidad sólo se copia el puntero a ese gráfico o sonido, por
lo que el tamaño de la b.d.g. no aumenta, ahorrándose así memoria.
Notese que la información de dos localidades con el mismo gráfico
o sonido es independiente, es decir, podemos tener dos localidades
apuntando al mismo gráfico y en una tenerlo como fijo y en otra
como flotante, o con distintas coordenadas, o tener dos
localidades apuntando al mismo sonido y en cada una haber
especificado una frecuencia distinta.
 -Clear: borra el puntero de la localidad, con lo que esta
queda libre. Si esta era la única localidad que apunta a ese
gráfico o sonido, el programa nos lo advierte y pide confirmación.
La actualización de la base de datos al borrar un dibujo o sonido
puede llevar algún tiempo; especialmente si no se trabaja con un
disco ram. Al finalizar la actualización conviene salir del DMG y
borrar el fichero .BAK que se ha creado para disponer de más
espacio de trabajo en el disco.
 -Nobuff/buffer:Al cargar el juego el DAAD reserva una zona de
memoria (buffer) en la que se cargan tantos gráficos y sonidos
como quepan, todos los demás serán cargados de disco cuando se
haga un PICTURE. Con la opción buffer indicamos al DAAD que el
gráfico o sonido de esta localidad tiene prioridad a la hora de
cargarse en memoria al principio del juego. Se usa, por ejemplo,
para gráficos de objetos, marco para el gráfico, caras de
personajes y en general cualquier cosa en la que se necesite
velocidad y no queramos que el juego se ponga a cargar. Hay que
tener en cuenta que la capacidad del buffer es limitada, variando
según el modelo de ordenador y la memoria de que disponga. Se
garantizan 32k de buffer aunque normalmente se puede contar con
algo más.

El resto del panel varía según lo que haya en la localidad sea un
gráfico o un sonido (si no hay nada, puede aparecer cualquiera de

los dos tipos de panel; esto no tiene importancia).
Si en esta localidad hay un gráfico en el panel encontraremos:

 -Fix/float: un gráfico fijo (fixed) aparece siempre en las
mismas coordenadas cuando lo imprimimos en el juego y siempre con
el mismo tamaño. Las coordenadas y dimensiones de la ventana que
esté seleccionada en ese momento, así como la paleta, se adaptarán
a las del gráfico (Véase al respecto la opción Palette Range más
abajo). Un gráfico flotante (floating), en cambio, aparece en las
coordenadas de la ventana seleccionada y con el tamaño de ésta y
sólo aparecerá entero si la ventana es mayor o igual que él; si es
menor, el gráfico quedará recortado por abajo y por la derecha (es
decir, la esquina superior izquierda del gráfico aparecerá
siempre). Así mismo, un gráfico flotante tomará la paleta que esté
activa en ese momento.
 Junto al botón Fix aparecen la coordenadas de la esquina
superior izquierda del gráfico en pixels. Nótese que sólo están
iluminadas en el caso de que el gráfico sea fijo.
 -Views: permite ver el gráfico asociado a esta localidad con
cualquiera de sus tres paletas (ST/Amiga/Vga, Ega o CGA). Si se
elige View EGA o CGA sin haber incluido su paleta correspondiente,
toda la pantalla aparecerá negra. Usar la opción view puede
corromperel gráfico o el sonido de la memoria de trabajo, por lo
que habrá que volver a cargarlo si no hemos acabado de trabajar
con él.
 -Palette: Permite cargar y editar las paletas de EGA y CGA.
Esta opción se explica con más detalle en la sección 2.4.4.
 -Palette range: Sólo para gráficos fijos, permite especificar
qué parte de la paleta va a modificar al imprimirlo. Si por
ejemplo damos el valor 9 como Start y 15 como End, al imprimir
este gráfico sólo los registros del 9 al 15 de la paleta cambiarán
a los de este gráfico.
 -Relocate: Permite cambiar las coordenadas de un gráfico
fijo. Aparecerá el dibujo en pantalla y lo podremos mover con las
teclas W (arriba), X (abajo), A (izquierda) y D (derecha). Nótese
que el movimiente es de 8 en 8 pixels; las coordenadas de un
gráfico fijo son siempre múltiplos de 8.

Si lo que hay en esta localidad es un sonido, aparecen sólo dos
botones:
 -Info: permite cambiar la frecuencia del sonido y ver su
longitud.
 -Listen: para oir el sonido.

Tanto para gráficos como para sonido, en la parte baja del panel
están los botones OK para confirmar los cambios realizados y
Cancel, que nos pregunta si queremos cancelar todos los cambios
realizados desde que se seleccionó Locations en el menú DB, sólo
los de la localidad seleccionada en este momento, o ninguno.

2.2.2. Make picture:
Con esta opción asociamos un gráfico a una localidad. Aparece el
gráfico que tengamos cargado en la memoria de trabajo y sobre él

un rectángulo en línea discontinua. Podemos cambiar el tamaño del
rectángulo con las teclas W, X, A y D; si además mantenemos
pulsada la tecla Shift, lo que haremos será mover el rectángulo,
una vez hayamos encuadrado la parte del gráfico que queremos
"recortar" basta con Return. En cualquier momento se puede salir
con la tecla Esc.

2.2.3. Link sound:
Para asociar el sonido de la memoria de trabajo con una localidad.

2.2.4. Squeeze:
Comprime la b.d.g. Requiere más espacio de disco cuanto mayor sea
la b.d.g. , por lo que conviene comprimir antes de que la b.d.g.
crezca demasiado (unas 300k si se trabaja con disco ram en una
máquina de 1 mega).

2.2.5. Buffer sort:
Para que la opción buffer de la opción Locations funcione hay que
realizar un buffer sort tras haber especificado qué graficos
queremos que vayan al buffer. Al final de la ordenación se nos
indica cuántos bytes del buffer hay ocupados con gráficos.
Tanto Squeeze como Buffer Sort crean ficheros .BAK que conviene
borrar antes de seguir.

2.2.6. Build IBM:
La b.d.g. de PC es ligeramente diferente a la de Atari. Con esta
opción se crea la b.d.g. de PC; que tendrá por defecto la
extensión .IBM y que, una vez pasada al PC deberá renombrarse a
.DAT.

2.2.7. Info:
Nos da el número de gráficos y sonidos que tiene la b.d.g. (si
hemos copiado un gráfico o un sonido a más de una localidad, sólo
se cuenta una vez) y la longitud total de la b.d.g.

2.3. Menú Pic:

2.3.1. View:
Permite ver con la paleta de ST/Amiga/VGA la pantalla que hayamos
cargado en la memoria de trabajo.

2.3.2. View CGA:
Permite ver con la paleta de CGA la pantalla que hayamos cargado
en la memoria de trabajo. Si no hemos incluido una paleta de CGA,
no se verá nada en pantalla (el dibujo estará ahí, pero con todos
los colores puestos a negro, que es valor por defecto de todos los
registros para las paletas de CGA y EGA).

2.3.3. View EGA:
Similar a la anterior pero para EGA.

2.3.4. Hot Points:
Esta opción no está implementada.

2.4. Menú Palette:

2.4.1. Load CGA:
Carga una paleta de CGA para el gráfico de la memoria de trabajo.
Esta paleta debe pertenecer a un gráfico en formato .PI1. La mejor
forma de hacerla es, teniendo el gráfico con la paleta original de
ST en el programa de dibujo que se use (nosotros usamos Degas
Elite y Delux Paint ST), cambiar cada registro de la paleta a uno
de los cuatro colores de la CGA hasta que quede bien (al menos
todo lo bien que puede quedar un dibujo en CGA); a continuación se
salva el gráfico y será de este gráfico del que el DMG saque la
paleta. Los valores de RGB que el DMG acepta se litan más abajo.

2.4.2. Load EGA:
Similar a la anterior para la paleta de EGA.

2.4.3. Calculate:
Como alternativa a las opciones de cargar las paletas de EGA y CGA
se puede hacer que el DMG las calcule a partir de la de ST. Esto
es más cómodo pero los resultados no son tan buenos, aunque se
pueden mejorar con la opción Edit.

2.4.4. Edit:
Permite editar las paletas de EGA y CGA. En la mitad izquierda del
panel aparecen tres columnas que, de izquierda a derecha,
representan los 16 registros de la paleta (numerados del 0 al 15)
y los colores de EGA y CGA que tienen asignados respectivamente.
A continuación se listan los colores de EGA y CGA junto el número
que representa a cada uno en el DMG y sus valores RGB:

 EGA:

 RGB
 0 Negro 000
 1 Azul 006
 2 Verde 060
 3 Cyan oscuro 066
 4 Rojo 600
 5 Magenta oscuro 606
 6 Naranja 620
 7 Gris claro 666

 8 Gris oscuro 222
 9 Azul claro 337
 10 Verde claro 272
 11 Cyan claro 277
 12 Rojo claro 722
 13 Magenta claro 727
 14 Amarillo 772
 15 Blanco 777

 CGA:

 RGB
 0 Negro 000
 1 Cyan 277
 2 Rosa 727
 3 Blanco 777

En la parte derecha de panel se encuentran los siguientes botones:
 -CGA Blue On/Off: cuando está a OFF, los colores de CGA serán
negro, verde, rojo y marrón en lugar de los listados arriba.
 -Load EGA y Load CGA permiten cargar desde aquí la paleta
exactamente igual a como se explicó arriba.

Este panel tambien aparece al usar el botón Palette del panel
Location Info. La diferencia es que en ese caso afecta al gráfico
de la localidad seleccionada mientras que en éste afecta al
gráfico que haya en la memoria de trabajo. En este último caso,
además, las paletas de EGA y CGA se conservan aunque se cargue
otro gráfico en la memoria de trabajo; así, si se quiere usar la
misma paleta de EGA o CGA para más de un gráfico no hay que volver
a cargarla, calcularla o editarla.

2.5. Menú Sounds:

Con las opciones Hear Sample e Info, idénticas a las de los
botones Listen e Info del panel Location Info, solo que se
refieren al sonido almacenado en la memoria de trabajo.

3. DMG para PC:
===============

Si se le llama con
 DMG nombrebdg
y no existe una b.d.g. con ese nombre, la creará para CGA.

Si se le llama con
 DMG nombrebdg -ega
y no existe una b.d.g. con ese nombre, la creará para EGA.

En el caso de especificar una b.d.g. ya existente no es necesario

darle ningún parámetro ya que el DGM detecta para qué tarjeta es.

Una vez cargado el programa aparece en la parte superior de la
pantalla información sobre la b.d.g., alguna ayuda y un prompt
donde debemos teclear uno de los comandos disponibles. Estos
comandos son los siguientes (nota:"ln" quiere decir "numero de
localidad" y "v" puede ser 0 ó 1):

A nombre - Carga una pantalla de Amstrad CPC de 4 colores
 llamada 'nombre'. (Esta opción sólo se usó en La
 Aventura Original).

B ln v - Indica si el dibujo de la localidad ln tiene
 prioridad para cargarse en el buffer (v=1) o no
 (v=0).

C ln - Borra el puntero de una localidad. Funciona como la
 opción CLEAR del DMG de Atari.

D ln1 ln2 - Copia (duplica) el puntero de la localidad ln1 en el
 de la localidad ln2. Como la opción COPY del DMG de
 Atari.

E ln nombre - Export clip: salva a disco con el nombre 'nombre' el
 dibujo recortado (clip) de la localidad ln.

F ln v - Para indicar si el gráfico en la localidad ln va a
 ser fijo (v=0) o flotante (v=1).

I ln nombre - Import clip: carga de disco el clip 'nombre' en la
 localidad ln.

L nombre - Carga en la memoria de trabajo un gráfico en formato
 .PI1 y lo convierte al modo en el que estemos
 trabajando. Para que la conversión sea correcta, se
 recomienda usar estas paletas:

 Registro EGA CGA
 rgb rgb
 0 000 000
 1 006 007
 2 060 007
 3 066 007
 4 600 007
 5 606 007
 6 620 007
 7 666 777
 8 222 007
 9 337 007
 10 272 007
 11 277 177
 12 722 007
 13 727 007

 14 772 747
 15 777 656

M ln - Hacer (Make) el dibujo para la localidad ln.
 Funciona igual que la opción Make Picture del DMG de
 Atari, con la diferencia de que el renctángilo se
 controla con las teclas del cursor.

O - Ordena el buffer. Igual que la opción Buffer Sort de
 la versión de Atari.

P ln v - Como la opción CGA Blue del DMG de Atari. 0 equivale
 a Blue Off.

R ln - Cambia las coordenadas de un gráfico fijo, como en
 Atari, pero con las teclas del cursor.

S - Comprime la b.d.g. (Squeeze).

V [ln] - Para ver el gráfico asociado a la localidad ln. Si
 no se da ningún numero de localidad se muestra lo
 que hay en la memoria de trabajo.

W - Crea una b.d.g. para PCW. Siempre la llama DGM.PCW,
 por lo que hay que renombrarla.

X ln - Muestra información sobre la localidad ln: su
 offset, si es un gráfico fijo o flotante, si tiene
 prioridad para el buffer y, en CGA, si usa la paleta
 de los azules o no.

Q - Salir al sistema.

Las opciones A, P y W sólo están disponibles en CGA.

 Appendix A - The character set

Throughout the whole DAAD system the same character set of 256
characters is used. The codes are as follows:

0-15 are internal codes and cannot be used in text. Thus they are
available only for shade patterns and graphic characters from the
graphic editors.

16-31 are the special language specific codes. These change
according to the language option. They mean nothing in the
English interpreter. In Spanish:

 Symbol IBM code DAAD code Escape
 ª 166 16 A
 ¡ 173 17 B
 ¿ 168 18 C
 « 174 19 D
 » 175 20 E
 á 160 21 F
 é 130 22 G
 í 161 23 H
 ó 162 24 I
 ú 163 25 J
 ñ 164 26 K
 Ñ 165 27 L
 ç 135 28 M
 Ç 128 29 N
 ü 129 30 O
 Ü 154 31 P

32-126 are the standard ASCII set

127 is used as a forced space code.

128-255 are whatever you want. Using the \g escape they can
become a second set, which take on the same codes as 0-127. On
the IBM in text mode only the ASCII uppercase 'A' to 'Z' will
appear, all others are suppressed.

 CONEXION ENTRE LOS ORDENADORES

Hay que construir los siguientes cables:

a) Cable 1:

Sirve para conectar el PC vía RS-232 con el Atari ST, el
Amiga y el Amstrad CPC. Tiene un conector hembra de 25 pines (DB-
25) a cada extremo. Los conectores deben estar cableados como
sigue:

 1--------------1
 2--------------2
 3--------------3
 |---4 4---|
 | 5--------------5 |
 |---6 6---|
 | 7--------------7 |
 |---8 8---|
 20--------------20

b) Cable 2:

Para conectar el PC con el RS-232 de un Spectrum 128k ó +2. Los
programas de comunicaciones que se suministran con el DAAD sólo
funcionan con un Disciple,que es incompatible con el +2A y el +3
(las comunicaciones con +3 y PCW se hacen a través del Amstrad
CPC, utilizando discos en formato DATA que pueden ser leídos por
cualquiera de los tres ordenadores).
Es un cable de 6 hilos con un conector DB-25 en un extremo y un
conector para el zócalo RS-232 del Spectrum en el otro cableados
como sigue:

 Función DB-25 Spectrum
 ------- ----- --------
 Masa 7 1 |---------------|
 TXD 2 2 |--- 6 5 4 3 2 1 |
 RXD 3 3 |--- - - - - - - |
 DTR 20 4 |---------------|
 CTS 5 5
 +12 V 6 6 Zócalo RS-232 Spectrum

c) Cable 3:

Para conectar el puerto paralelo del PC con el puerto de E/S de
usuario del Commodore 64. Es un cable plano de 25 hilos con un
conector a presión DB-25 en un extremo y el conector adecuado para
el Commodore en el otro. Este conector está cableado como sigue:

 Hilo Patilla del conector del C-64
 ---- -----------------------------
 5 M
 9 L
 11 K
 13 J
 15 H
 17 F
 19 E
 21 D
 23 C
 25 B

Los hilos se han numerado de izquierda a derecha sosteniendo el
cable de forma que la patilla A del conector del C-64 es la que
queda más a la derecha.

EXTERN

This gives an outline of the support for assembly language on the DAAD
interpreters. Note that the assembler mechanism described is for 8 bit
only. The 16bit interpreters have a LINK mechanism for external code -
but you can still use the compiler directives to provide data in the
database on 16bit.

In order to make things simple you are advised to use the facilities
provided with the compiler, this makes the whole process simple (and
the same) for each machine.

The idea is to include a block of assembly language and call it from
a DAAD program. The only real free memory in the DAAD system is the
area used for the database, so it seems logical to include any assembler
in this section.

The database is fairly simple in layout, it consists of a number of
pointers at address DBADDR - All the symbols given are defined in the
header file SYMBOLS.ASM which must be included in any assembler source.
They are also defined in SYMBOLS.Z80/652 for use with data statements
within a DAAD file - see later.

After these pointers come the data tables generated by the compiler.
The first is the CTL section. Now because this is actually empty and
always at the same address (after the pointers) it is the only really
useful address/place for any non relocatable code. The EXTERN.SCE file
uses this for the interrupt code. the symbol CTLADDR defines the address
of the CTL section. NOTE: All these addresses are different on each machine
for obvious reasons, so you must assemble a copy of the code for each
machine. The examples show how to do this easily with conditional assembly.

If you include machine code anywhere else in the database you will not know
its address until compile time, and as you make changes to the database
its position may change, so you would have to re-assemble and compile again.
Thus the only code you should include elsewhere in the database is relocatable
code/data. Machine code is just a series of numbers like any piece of data
so the next problem is to get your code inserted in the database.

The compiler provides several pre-processor commands to achieve this:-

NOTE: You aren't limited to only assembly language. You can generate new data
tables as well with these commands.

#incbin filespec

Will include a memory image file at the current position in the database

#defb expression {{{expression} expression}...

Will include the indicated byte value(s) in the database at the current
address.

#defw expression {{{expression} expression}...

Will include the indicated word value(s) in the database at the current
address.

#hex hexpair{{whitespace}{hexpair}....}

Will include direct hex data in the db. This is similar to the HEX
statement of PDS.

#dbaddr symbol

Will give symbol the current address in the database. This can be used
for CALL or #defw commands.

The calling mechanism for 8 bit.

In order to call an assembler routine you have two mechanisms:

1/ SFX,EXTERN

These two commands have an external vector. Which can be set using two
special forms of the #incbin directive:

#extern {filespec}
#sfx {filespec}

If you include the filename then it will cause the given file to be
included in the database (as if the command was followed by #incbin).
The vector in the interpreter is set on database load to the address
of the routine. Note that SFX already has a default effect of writing to
the sound chip registers. So any routine using this vector will replace
this function. The EXTERN.SCE file uses EXTERN to achieve the sound
so that the SFX command continues to function.

Now any EXTERN or SFX commands will be directed to your routine.

The interpreters recognise 3 external vectors. The third is for a 50Hz
interrupt:-

#int {filespec}

Any routine placed on this vector will be called 50 times a second for
the entire period that the game is running. Thus there is no command in
the DAAD language to call the routine. The Z80 ones save only the AF and
HL registers (as HL is given as your address), so be sure to save any
other registers you use. The 6502 interps save the processor state.

2/ CALL address

This is a special CondAct which transfers execution to the given routine.
Although flexible it can't pass any parameters directly. You need to place
data in Flags before the call or use #defb/w after to include static parmeters.
These can be extracted using the BC pointer, leaving it pointing to the
first non parameter byte afterwards.

Address can be any expression which evaluates to a number in the range
0-65535. Note that calling addresses which are not documented routines
or your own subroutines will usually have the effect of crashing the
computer!!

Assembler bit

1/ Z80

For the SFX and EXTERN CondActs your routine will be supplied with the
following information:-

 A - Value of first parameter (may be indirected, in which case you will
 get the contents of the flag in A.)
HL - Points at the Flag given by the first parameter (or the flag given by
 the contents of the flag if ind
DE - Points at the Object location given by the first parameter

IX - Address of Flag 0, 256 bytes after this are the objects
BC - points at the second parameter of the call, you can advance this pointer
and leave it pointing at the last inline parameter if you wish e.g.

 EXTERN 0 6
#defw Anaddress

Could be accessed with the following routine:-

 LD A,(BC)
 PUSH AF
 INC BC
 LD A,(BC)
 LD E,A
 INC BC
 LD A,(BC)
 LD D,A ; DE = Anaddress
 POP AF ; A = 6

The IX and BC registers must be preserved/updated. But the A,DE and HL
registers can be dealt with as you like. Note that you should avoid the
Alternate set and AF' and IY as these are used by the OS of several machines.

After a CALL the A,HL and DE registers are meaningless. And the BC
register already points at the next CondAct or any following data, this is
differenbt to SFX/EXTERN.

Note that on machines where RAM and ROM co-exist your environment will be
64K or RAM, so don't go looking for ROMS without more info...

 LISTA DE LOS PROGRAMAS DEL DAAD V2
==

I.- IBM PC (6 discos de 5 1/4):
===============================

NOTA:Los ficheros con la extensión .ARJ están comprimidos. Bajo cada uno de
ellos se listan los ficheros que se obtienen al descomprimirlos.

1.-Disco de desarrollo (Developer):

CHARS.ASM -En este fuente se declara el numero de partes de una aventura y
 la distribución por los distintos discos de los ficheros que la
 componen. Para ensamblar y linkar este fichero y el siguente
 son necesarios los programas MASM y LINK de Microsoft (no
 incluidos). En caso de que no se disponga de estos programas
 también se incluye una versión ejecutable de los intérpretes
 (ver disco 3)
EXTERN.ASM -Fuente mínimo a linkar con un interprete de PC si no se usan
 externs en PC
DC.EXE -Compilador
DMG.EXE -Creador de bases de datos gráficas para PC (CGA/EGA) y PCW
SYMBOLS.SCE -Declaración de símbolos útiles a la hora de programar
 (como por ejemplo, los nombres de las banderas)
SYMBOLS.ASM -Idem para ensamblador
MACROS.Z80 -Idem
SYMBOLS.Z80 -Para incluir pequeños listados en ensamblador de Z80
 en el fuente de la aventura
SYMBOLS.652 -Idem para el microprocesador 6502
BLANK.SCE -Fuente mínimo para empezar una aventura
BLANK.DDB -Versión compilada de BLANK.SCE
DMSXI.Z80 -Intérprete de MSX

OBJ <DIR> -Los intérpretes de PC vienen como módulos objeto para
 poder linkarlos con EXTERN.OBJ y CHARS.OBJ
 CHARS.OBJ -Versión ensamblada de CHARS.ASM
 EXTERN.OBJ -Versión ensamblada de EXTERN.ASM
 INTE.OBJ -Distintos tipos de intérpretes (en inglés y español)
 INTECGA.OBJ
 INTED.OBJ
 INTEDM.OBJ
 INTEM.OBJ
 INTS.OBJ
 INTSCGA.OBJ
 INTSD.OBJ
 INTSDM.OBJ
 INTSM.OBJ

2.-Disco de utilidades del DAAD (Utilities):
--
GRAPHICS <DIR>
 DRAW <DIR>
 DSC.COM -Convierte gráficos de Spectrum a Commodore 64
 DSM.COM -Idem a MSX
 DSA.COM -Idem a Amstrad CPC
 DCA.COM -Comprime los gráficos de Spectrum
 DCS.COM -Comprime los gráficos de Amstrad CPC

 PIXELS <DIR>
 CACGA.COM -Convierte gráficos de Amstrad CPC a CGA
 CSTEGA.EXE -Convierte gráficos en formato .PI1 de ST a EGA
 CSTVGA.EXE -Idem a VGA (para la pantalla de presentación)
 CSTAM.EXE -Idem a Amiga

 CSTS.EXE -Idem a Spectrum
 CSTA.COM -Idem a Amstrad CPC
 CST1PCW.EXE -Idem a PCW
 CST3PCW.EXE -Convierte gráficos en formato .PI3 de ST a PCW

COMMS <DIR>
 XMP.EXE -Comunicaciones entre PC y Spectrum (Con Disciple)
 GOCBM.COM -Comunicaciones con Commodore 64
 PPM.COM -Envía una aventura al MSX y la ejecuta (Necesita PDS)
 AAH.COM -Añade una cabecera de Amstrad CPC a un fichero
 ASH.COM -Añade una cabecera de Spectrum +3 a un fichero
 RAAH.COM -Quita la cabecera de Amstrad CPC de un fichero
 RASH.COM -Quita la cabecera de Spectrum +3 de un fichero

SQUEEZE <DIR>
 FINDTOK.EXE -Halla los tokens que proporcionarán la compresión más
 eficiente del texto de la aventura.

RECOVER <DIR>
 LOOK.COM -Permite examinar los textos de una aventura compilada

PRINT <DIR>
 SPP.COM -Pone la impresora en modo IBM
 WP <DIR>
 STRIP.COM -Elimina los espacios al final de cada línea
 de un texto.
 ASC1ST.COM -Convierte un texto en formato del 1st Word
 de Atari a ASCII

ASM <DIR>
 MHEX.COM -Crea a partir de un fichero binario un bloque en
 fuente para incluir en el listado de la aventura
 GENTASM.COM -Convierte un listado de GENS de Spectrum al ensamblador
 cruzado 2500AD (no incluido)

3.-Disco de intérpretes ejecutables:

Para el caso de que no se disponga de los programas MASM y LINK necesarios
para montar los intérpretes de PC, aquí se incluyen ya montados. De los que
necesitan que se les indique el número de partes de la aventura, se incluyen
versiones para una, dos y tres partes.

INTE1.EXE
INTE2.EXE
INTE3.EXE
INTECGA1.EXE
INTECGA2.EXE
INTECGA3.EXE
INTED.EXE
INTEDM.EXE
INTEM1.EXE
INTEM2.EXE
INTEM3.EXE
INTS1.EXE
INTS2.EXE
INTS3.EXE
INTSCGA1.EXE
INTSCGA2.EXE
INTSCGA3.EXE
INTSD.EXE
INTSDM.EXE
INTSM1.EXE
INTSM2.EXE

INTSM3.EXE

4.-Disco de documentos y demostración (Doc & Demo)
--
EXTERN.ARJ -Demostración de externs para ordenadores de 8 bits
 EXTERN.DOC
 EXTERN.SCE
 JMSINT.Z80
 DSRCPC.Z80
 DSRMSX.Z80
 RCCPC.Z80
 RCMSX.Z80
 RCSPE.Z80
 SONIDOS.EMD

GFX.ARJ -Demostración del comando GFX (manejo de gráficos y paletas en
 16 bits).
 GFX.DOC
 GFX.SCE
 GFXREAD.ME

TEMPLOS1.ARJ -Todo lo necesario para compilar y ejecutar la primera parte de
 "Los Templos Sagrados"
 T1.SCE -Fuente principal
 TD.SCE -Otros fuentes
 TP.SCE
 TV.SCE
 T1B.TXT -Texto para ordenadores con mucha memoria
 T1B.TOK -Y los tokens para su compresión
 T1S.TXT -Texto para ordenadores con memoria pequeña
 T1S.TOK -Y sus tokens
 TS1.TXT -Mensajes del sistema
 INTSDM.EXE -Intérprete
 T1.DDB -Aventura ya compilada
 T1.DAT -Gráficos (CGA/EGA/VGA)
 T1.CHR -Juego de caractéres

5.-Manuales del DAAD

6.-Programas de dominio público/shareware

ARJ -Compresor/descompresor
PROCOMM -Programa de comunicaciones
QEDIT -Editor de textos

II.- ATARI ST (1 disco de 3 1/2 formateado a doble cara):
===

EDI1.PRG -Intérprete inglés para una parte. Baja y media resolución.
EDI1L.PRG -Intérprete inglés para una parte. Sólo baja resolución.
EDI2.PRG -Intérprete inglés para dos partes. Baja y media resolución.
EDI2L.PRG -Intérprete inglés para dos partes. Sólo baja resolución.
EDI3.PRG -Intérprete inglés para tres partes. Baja y media resolución.
EDI3L.PRG -Intérprete inglés para tres partes. Sólo baja resolución.
SDI1.PRG -Intérprete español para una parte. Baja y media resolución.
SDI1L.PRG -Intérprete español para una parte. Sólo baja resolución.
SDI2.PRG -Intérprete español para dos partes. Baja y media resolución.
SDI2L.PRG -Intérprete español para dos partes. Sólo baja resolución.
SDI3.PRG -Intérprete español para tres partes. Baja y media resolución.
SDI3L.PRG -Intérprete español para tres partes. Sólo baja resolución.
DMG.PRG -Creador de bases de datos gáficas para ST, Amiga y PC (CGA,EGA,

 VGA). También para incluir sonidos digitalizados (ST y Amiga)
DMG.RSG -Su fichero de recursos.
DSTA.PRG -Covierte pantallas de ST a Amiga
DSTA.RSC -Su fichero de recursos.
PART1.CH0 -Un juego de caractéres para baja resolución
PART1.CHR -Un juego de caractéres para media resolución
INTRAM.ACC -Un disco-ram de dominio público
INTRAM.RSC -Su fichero de recursos

DEMO <DIR>
 STT1.DAT -La base de datos gráfica de la primera parte de Los Templos
 Sagrados para poder estudiarla con el DMG y poder hacer las
 versiones de Atari ST y Amiga si se desea.

III.- AMIGA (1 disco de 3 1/2):
===============================

OTROS <DIR>
 DAAD <DIR>
 EDI1 -Intérprete inglés para una parte
 EDI2 -Intérprete inglés para dos partes
 EDI3 -Intérprete inglés para tres partes
 SDI1 -Intérprete español para una parte
 SDI2 -Intérprete español para dos partes
 SDI3 -Intérprete español para tres partes
 PART1.CHR -Set de caracteres
 SDI2.INFO -Un icono que, renombrándolo, se puede usar
 con cualquier intérprete

 UTILIDADES <DIR>
 DOS-TO-DOS -Permite leer y escribir discos de PC y Atari
 VT100 -Programa de comunicaciones

Este disco contiene, además, todos los directorios y ficheros necesarios para
hacer que la aventura se autoejecute. Para ello basta con hacer una copia del
disco, eliminar el directorio OTROS y, evidentemente, incluir la aventura.

IV.- Spectrum (1 disco de 3 1/2 para Disciple y otro de 3'' para +3)
==

1.-Disciple:

DRS -Cargador BASIC para una aventura
DS48IS -Intérprete
DG -Editor de gráficos: cargador BASIC
DS48GE -Editor de gráficos: programa en C.M.
BLANK + -Una base de datos gráfica vacía necesaria para el editor
XM -Programa de comunicaciones con PC: cargador BASIC
SXM -Programa de comunicaciones con PC: programa en C.M.

2.-Spectrum +3:

DRS -Cargador BASIC para una aventura
DS48IS.P3F -Intérprete
DG -Editor de gráficos: cargador BASIC
DS48GE.P3F -Editor de gráficos: programa en C.M.
BLANK.SDG -Una base de datos gráfica vacía necesaria para el editor

V.- CPC/PCW (1 disco de 3''):
=============================

CPC (CMP):
 P11CPM3.EMS -Versión de CPM3 preparada para usar el protocolo de
 comunicación Modem7
 DCPCIS.Z80 -Intérprete
 MCRF.COM -Construye u programa ejecurable desde AmsDOS a partir
 de los ficheros de una aventura
 UKM7AMS.COM -Programa de comunicaciones

CPC (AmsDOS)
 DG.BIN -Editor de gráficos
 BLANK.BIN -Base de datos gráfica vacía para DG

PCW:
 DPCWIS.Z80 -Intérprete PCW
 PARTE001.CHR -Set de caracteres

NOTA: El mismo disco de 3'' contiene por una cara los ficheros para +3 y por la
otra los de CPC y PCW.

VI.- Commodore 64 (2 discos de 5 1/4):
======================================

1.-DAAD:

LS1 -Cargador para la primera parte de una aventura
LS2 -Idem para la segunda parte
SDI -Intérprete
DR -Programa para recibir based de datos desde PC
DRC -Y su C.M.
DG -Editor de gráficos.
DGC -Su C.M.
aBLANK -Base de datos gráfica vacía para DG
R -Programa para renombrar ficheros
S -Programa para borrar ficheros

2.-FAST HACK'EM:

Programa para formatear disco y copiar discos y ficheros.

