
THE BASIC SPECTRUM COMPILER

OXFORD COMPUTER SYSTEMS
(SOFTWARE LTD.)

Copyright (c) 1985 All rights reserved
OXFORD COMPUTER SYSTEMS (SOFTWARE) LTD.

OCTOBER 1985

COPYRIGHT
BLAST is copyrighted and all rights to it are reserved by Oxford Computer Systems

(Software) Ltd. The product is intended for use by the original purchaser only. The
purchaser of this software is hereby licensed only to read the software from its medium
into the memory of a computer solely for the purpose of executing the program therein.
Duplicating, copying (other than for backup purposes), selling, or otherwise distributing
this product is a violation of the law.

This manual is copyrighted and all rights are reserved. It may not in whole or in part
be copied, photocopied, reproduced, translated or reproduced by any electronic means
without prior consent in writing, from Oxford Computer Systems (Software) Ltd.

DISCLAIMER
Although this software has been thoroughly tested, no claim is made concerning the

adherence of BLAST to any particular specification or the suitability of BLAST for any
particular purpose.

CONTENTS
Introduction 5
What is a compiler 6
Terminology 7
Product description 7
Getting started 8
BLASTING large programs 10
P-code and machine code 12
BLAST and user written machine code 14
Compatability with SPECTRUM BASIC 15
Autorun and saved variables 15
Copying BLASTED programs 16
Errors 16
Compiler directives 17
Trouble shooting 17
Reducing loading times 18
Command summary 19

The BLAST TOOLKIT 20
Line commands 21
Block commands 21
String functions 21
Other commands 22

High speed integer only compilation 23

Appendix
BLAST memory map 25
Run time memory map 26

INTRODUCTION
BLAST is the first fully compatible optimising BASIC compiler to be released for any
Sinclair computer. Its principle aim is to provide the maximum possible execution speed
for programs written in Spectrum BASIC without producing prohibitively large object
programs. BLAST can increase the speed of BASIC by up to a factor of 40.
Issues of BLAST marked 4.0 (or above) or marked SUPER BLAST+ include an
additional integer only compiler IBLAST for programs which do not use floating point
maths. Programs compiled with IBLAST run considerably faster even than those
compiled by BLAST.

WHAT IS A COMPILER?
In this section we explain the basic facts about compilers and introduce a small amount of
terminology. An understanding of the basic concepts introduced here, although not
essential, will greatly enhance your ability to exploit BLAST. The short section on
terminology should be read and understood.
A BASIC program is simply a piece of text in which we specify the actions we want the
computer to take when the program is RUN. The Spectrum’s Z80 microprocessor
understands only a language called machine code. To the Z80, a BASIC program is
complete gibberish. In order to RUN a program we need some software which can
understand BASIC and translate it into a form that the Z80 can understand. There are two
types of BASIC translating program, the BASIC interpreter and the BASIC compiler.

1) Interpreters
A BASIC interpreter such as the one supplied in ROM as part of your Spectrum, reads
each statement of the program and as it does so, performs the actions specified.
Interpreters are very useful for program development because it is the actual BASIC text
that is being interpreted. One can edit a program, run it and then re-edit rapidly and
without fuss. The disadvantage of an interpreter is that programs run slowly. This is
because most of the time, the interpreter is trying to make sense of the BASIC rather than
carrying out the specified actions.

2) Compilers
Unlike an interpreter, a compiler translates a whole program into something that the
machine can understand in one operation, called a compilation. When it has finished we
are left with a block of machine code which is the translated version of the BASIC text.
Compilers are much less useful for program development than interpreters since even the
smallest change to the BASIC necessitates a complete re-compilation of the program.
However, once a program has been compiled it will run at much greater speed.

TERMINOLOGY
In the remainder of this manual an understanding of the following terms will be assumed.
compile time The time at which BLAST compiles a program
run time The time at which the compiled program is actually executed.
source file The input file to a compiler, in this case BASIC text, sometimes
 called the source code.
object file The output from a compiler, in this case the machine code
 translation of the BASIC text, sometimes called the object code.
machine code The internal language understood by the Spectrum’s Z80
 microprocessor.
p-code An intermediate representation of a program somewhere between
 BASIC and machine code. P-code is an alternative to machine
 code which requires considerably less space. It does however
 require a mini interpreter at run time and is therefore slightly
 slower than machine code although much faster than interpreted
 BASIC. BLAST can compile programs into p-code or machine
 code or, into a combination of the two.
compiler directive A message to the compiler which is added to the text of a source
 program and which affects the way the compiler behaves. BLAST
 features a number of useful compiler directives which are added
 to the program in the form of special REM statements.

PRODUCT DESCRIPTION
Your BLAST package should contain the following:
1) This BLAST manual
2) One cassette tape containing the following programs
 Side A: BLAST / COPIER
 Side B: TOOLKIT / IBLAST*

* IBLAST is only supplied with BLAST issue 4.0 or above.

GETTING STARTED
This section explains how to use BLAST in its simplest mode. We take a BASIC
program already loaded into the computer and compile it directly into RAM without any
tape or microdrive access. In this mode (called the RAM to RAM mode) we are limited
to very short programs since the compiler, the source program and the object program all
have to be in memory at the same time.
Load BLAST as follows:
LOAD "BLAST" <enter>
BLAST will autorun and ask the question BACKUP TO MICRODRIVE (Y/N)
If Y is selected, instructions for the microdrive backup will follow.
At this point BLAST makes a protection check in order to establish you as an authorised
user of the software. We hope you will not find the procedure too tiresome. The
protection sequence occurs once only when BLAST is first loaded. Once the check has
been made, BLAST will allow you to compile as many programs as you wish without
additional hassle.
On the inside cover of this manual or on a separate sheet will be found a matrix of
coloured squares. Each square can be identified by means of a simple grid reference. For
example to find square E-13, identify column E (marked along the bottom of the matrix)
and row 13 (marked along the left hand edge of the matrix) square E-13 is where column
E and row 13 meet. (See figure 1).

figure 1.

The protection check is very simple; all you have to do is correctly identify 4 squares and
enter their colours. BLAST will give instructions as follows:
ENTER THE COLOUR IN SQUARE X-XX (W, Y, G, R)?
where X-XX is a grid reference. When you have found the square, enter one of the letters
W, Y, G or R depending upon whether the square is white, yellow, green or red.
When you have correctly answered four such questions the protection check is complete.
BLAST is now fully initialised and ready to compile programs. From now on, until you
type NEW or switch off the machine, your Spectrum will respond to a set of additional
commands used to communicate with BLAST. The BLAST commands are preceded by
an asterix (*) to distinguish them from the regular Spectrum commands.
First we shall use BLAST to compile a program already in memory and have the
resulting object code stored also in memory. This is how BLAST behaves by default.
The purpose of this RAM to RAM mode is to demonstrate the use of BLAST. Since only
about 2k of memory is available in this mode it can not be used to compile programs of
more than a trivial size.
Type in or load a few lines of BASIC and type *C to compile.
Do not be alarmed at any gibberish which may appear on the screen; this is simply
BLAST making the best use of the memory available. Assuming that there are no
problems, after a minute or two control will be returned to you with the message:
(0) WARNINGS (0) ERRORS
To run the compiled version of your program, type *R.
While BLAST is in memory, you will be able to edit your source code, run under the
interpreter or compile and run the BLASTED program as often as you wish. While
working with BLAST, you will probably find that from time to time you wish to clear a
BASIC program from memory without destroying BLAST. To do this, instead of typing
NEW (which clears the whole of memory including BLAST) use *N. This will remove
any BASIC text without affecting the compiler.
N.B. Although BLAST can cope with user written machine code called from a BASIC
program, it can not do so when used in RAM to RAM mode. See the section on BLAST
and user written machine code.
Since RAM to RAM mode is only intended as a demonstration, no method is provided of
saving the compiled program. The same effect is easily achievable however by compiling
RAM to TAPE (see below).

BLASTING LARGE PROGRAMS
So far we have used BLAST to compile from memory into memory. As explained earlier,
this is only possible if the program to be compiled is small. To get round this problem,
BLAST provides the option to read the source code from tape or microdrive and to write
the object code out to either of these peripherals. Below we explain how to use BLAST in
its various input/output modes.

Setting the input and output device
To set the device from which BLAST is to read the source code, select the INPUT
option by typeing *I and answer the question
ACCEPT INPUT FROM: RAM, TAPE, MICRODRIVE
by typeing B, T or M.
To set the device to which BLAST is to write the object code, type *O and proceed as
above.
At this point, BLAST will request information appropriate to the input/output options that
have been chosen. For example, if microdrive has been selected BLAST will request a
drive number and filename. If tape is selected BLAST will ask for a filename only.
The most useful combination of input and output devices are TAPE to TAPE and
MICRODRIVE to MICRODRIVE. In both of these combinations, BLAST will be able to
compile programs of any size.
If the output device selected is tape or microdrive, the compilation will end with the
object program written to that device. Obviously the object program must be loaded
before it can be run. Bear in mind that BLAST itself consumes a considerable portion of
the Spectrum’s memory. This does not prevent you from compiling large programs but it
does mean that when you load a large BLASTED program from tape or microdrive,
BLAST will have to be removed from memory first. This is done with the command *Q

Microdrive BLASTING
This is the best way to compile a large program. If you have large programs to compile
and no microdrive, we suggest that you consider obtaining one.
The procedure is
1) Type *I, select M and give drive and filename details as requested.
2) Type *O, select M and give drive and filename details as requested.
When BLAST compiles to microdrive, 2 or 3 files are written, all of which are required
in order to run the program. Their filenames are as follows: -

the object filename specified
the same name with .P appended
an optional .V file (see saved variables)

The compiled program is executed simply by loading the first of these (the user specified
name) and typing RUN. Note that BLAST should be removed from memory before the
object program is loaded.

Tape BLASTING
If you do not have a microdrive and you wish to compile a large program this is the way
you will have to do it. Due to the limited nature of tape I/O, the program to be compiled
must first be saved to tape in a special format. Facilities to do this are included in the
toolkit supplied on the reverse side of the BLAST tape.
The procedure is
1) Load the toolkit (see The BLAST Toolkit)
2) Load the program to be compiled
3) Insert a blank tape and type *B
Once the source program has been saved on tape in the correct format, BLAST can be
loaded and the program compiled.
Programs may be compiled TAPE to RAM. However this is only possible for very short
programs. The most useful way of using BLAST and cassette is to compile TAPE to
TAPE.

Tape to tape BLASTING
In this mode we use two tapes; a source tape and an object tape. The source tape contains
your program in the special form suitable for compilation (see above), the object tape is
blank.
We assume that you have selected tape for input and output. When you type *C to
compile, BLAST will instruct you to insert the source tape and press play. After a short
time the computer will beep and ask you to change tapes. You must stop the source tape
within five seconds of the beep. If you do not do so it is likley that data will be lost.
After a short time you will be requested to change tapes again. Timeing is not so critical
when the object tape is being swopped for the source tape; you are nevertheless advised
to be alert during the whole process in order to minimise loading time of the final
BLASTED program.
During the compilation you will be asked to swap tapes a number of times that depends
upon the amount of BASIC being compiled. Finally the compilation will end with the
usual error status report and the message HIT ANY KEY.
As soon as a key is struck, the computer will be re-set. To load the BLASTed program,
rewind the object tape and LOAD "".

Notes
All combinations of RAM, TAPE and MICRODRIVE are allowed by BLAST except for
TAPE to MICRODRIVE.
Although in general BLAST, once loaded can be used to compile as many programs as
necessary there are two restrictions:
1) If BLAST is used to compile a program with TAPE selected as the output device, the
compiler must be re-loaded before it can be used again.
2) If BLAST is used to compile a program with MICRODRIVE selected as the output
device, the compiler must be re-loaded before it can subsequently be used to compile a
program with TAPE selected as the output device.

P-CODE AND MACHINE CODE
BLAST can compile programs either directly into Z80 machine code or into a compact
pseudo machine code called p-code. The pros and cons of these two types of object code
can be summarised as follows:

p-code machine code
SPEED faster than BASIC, slower

than machine code.
Fastest possible.

SIZE Smaller than BASIC.
Smaller than machine code

Usually larger than BASIC.
Always larger than p-code.

The memory map for a BLASTED program is provided in Appendix 1. From this it can
be seen that in addition to the object code and data, a BLASTED program also contains a
block of code called the Run Time System (RTS). The RTS is essentially a library of
subroutines which the object code calls for such purposes as multiplication, division and
string handling. The RTS is always included in a BLASTED program and it imposes an
overhead of about 5k. Because of the RTS, no BLASTED program can ever be less than
5k long. However, since p-code is about two thirds the size of the equivalent BASIC,
large programs which are compiled into p-code can actually become smaller than the
original BASIC. For example a 3k program, when BLASTED into p-code would occupy
approximately 7k; 2/3 * 3k for the p-code and 5k for the RTS.
Similarly, a BASIC program 30k long would compile to about 25k. Obviously there is a
break even point somewhere at which the two sizes are about the same. This occurs at
approximatly 5k.
Of course the figures quoted here are necessarily very rough. Some types of program
generate less p-code than others and a program which contains many comments will
show a much more dramatic reduction in size than one which does not.
If BLAST is directed to generate machine code rather than p-code there will nearly
always be an increase in size. Such programs will run slightly faster but this is of no use
if the object code will not fit into the machine. Fortunately, BLAST can be directed to
generate machine code for those sections of a program that are speed critical and p-code
for the remainder. Very often, compiling quite a short section of BASIC into machine
code and the rest into p-code can provide almost the same speed as the program would
have had if it had been compiled entirely into machine code.

The type of object code that BLAST generates is specified by means of compiler
directives. (See the section on this topic)
To instruct the compiler to generate p-code we write
REM! PCODE
and to instruct it to generate machine code,
REM! MACHINE CODE
BLAST generates p-code by default.

Caution
Whenever p-code and machine code are mixed within a single program, there is an
important rule which must be observed:
There may be no jumps (GOTO/GOSUB) into the middle of a p-code section from a
machine code section and there may be no jumps into the middle of a machine code
section from a p-code section.
All GOTO/GOSUB’s from p-code into machine code must jump to the
REM! MACHINE CODE directive and all GOTO/GOSUB’s from machine code into
p-code must jump to the REM! PCODE directive.
Additionally, a p-code user defined function may not be called from machine code and
visa versa.

BLAST AND USER WRITTEN MACHINE CODE
BLASTING a program which calls machine code subroutines should present no
problems. BLAST has been designed for maximum compatability with Spectrum BASIC
and this compatability extends to variable and program storage formats. In particular, the
following practices commonly adopted by Spectrum users have been specifically
provided for.
1) A BLASTED program may reserve space for machine code by lowering RAMTOP in
the normal way.
2) BASIC variables are stored by BLAST in exactly the same way as they are in
Spectrum BASIC. Consequently, machine code which picks these up and manipulates
them will still work under BLAST.
3) Machine code routines which add extensions to BASIC by intercepting the Spectrum’s
error routine (or by most other methods) should still work. The explanation for this
surprising fact is as follows: When at compile time, BLAST encounters an alleged
statement that appears syntactically erroneous, the compiler will copy the offending text
into the object file preceded by a special escape code. When at run time the RTS
encounters this escape code, it will call the BASIC interpreter to handle it. If the text is a
genuine syntax error, the interpreter will report the fact and exit in the normal way. If it is
an extension to BASIC which has been provided for, the interpreter will behave just as it
would had the program not been BLASTED.

Whenever BLAST encounters such a statement it will stop compiling with the message
WARNING HIT ANY KEY
As soon as a key is depressed compilation will continue.
BLAST’s compiler directives are entered in the form of special REM statements which
are recognised by BLAST at compile time. It is possible that in the future other
commercial packages or indeed user written machine code will make use of the same
technique to add extra commands to BASIC. For this reason a facility has been built into
BLAST which allows REM statements to be passed to the interpreter if they begin with
the escape character %. If BLAST encounters a REM statement beginning with this
character, it will generate code which causes the REM statement, with the % stripped to,
be passed to the interpreter at run time.
It is quite possible that certain obscure practices will cause problems. For example,
machine code held in REM statements will certainly not work when the program is
compiled because this method of storing routines depends on the way BASIC text is held
in memory.
NB. Because of possible clashes between BLAST itself and user written machine code,
the compiler will not allow programs calling Z80 routines to be compiled into RAM.
Such programs should be compiled using tape or microdrive for output.

COMPATABILITY WITH SPECTRUM BASIC
BLAST has been designed for maximum compatability with Spectrum BASIC. This
compatability extends not only to the language itself but also to the programming
environment.
In BASIC, it is possible to stop a program while it is running, look at variables, execute
statements and so on. The run can then be continued or re-started. This is all possible
under BLAST except for one difference. The CONTINUE statement will not work on a
BLASTED program.

Calling a BLASTED program as a subroutine from BASIC
Whenever a BLASTED program is resident in memory it can be run by executing the
command RANDOMIZE USR 23792. There is nothing to prevent an ordinary BASIC
program from co-residing with a BLASTED program and BASIC text may be entered or
loaded in the normal way. Normally when a BLASTED program is executed it clears any
variables in memory. This can be disabled with a POKE 23803,1 or by using the
AUTORUN directive. In order to make the BLASTED code return to a given line in
BASIC, say line 1000 use the statement REM % : GOTO 1000 in the BLASTED
program.

AUTORUN AND SAVED VARIABLES
In order to save space, many BASIC programs are saved along with some or all of their
variables. When compiling to MICRODRIVE BLAST copes with this using the
REM! AUTORUN directive as follows: If the AUTORUN directive appears at the top of
a program, BLAST will create a separate file (filename .V) containing any saved
variables. When the BLASTED program is loaded, this file will be brought into memory
automatically. If the AUTORUN directive is not included, BLAST will assume that there
are no saved variables.
Unfortunately due to the limited nature of tape I/O, the method for dealing with saved
variables when a program is compiled to tape is somewhat more complex. It is as
follows.
Load the toolkit and the BASIC program to be compiled. Use the *D command to
delete the program and then save the variables under a suitable filename as a normal
program. Insert a line at the start of the program to be compiled to MERGE this file.
When the BLASTED program is run it will merge these saved variables.
The Spectrum’s operating system allows programs to be saved in such a way that they
will run automatically from a specified line number when loaded. Such a facility is not
directly available under BLAST since the BLAST equivalent (REM! AUTORUN) will
always cause execution to begin at the first line of a program. The solution is simple. Add
a GOTO statement to the beginning of the program (directly after the
REM! AUTORUN) which will cause a jump to the desired line when the program runs.
Re-save the program and compile.

COPYING BLASTED PROGRAMS
Microdrive copying
On the A side of the BLAST tape directly after BLAST is a utility for copying
BLASTED programs from one microdrive to another. To use this program type
LOAD "COPIER" and follow the instructions in the program.

Tape copying
Programs which have been compiled to tape may be copied using a tape to tape copier.
Alternatively, as many copies as required may of course be made by compiling the
program as many times as necessary.

ERRORS
1) Compile time errors
Although it is only possible to enter syntactically correct BASIC via the Spectrum editor,
there are ways that incorrect code can be submitted to BLAST. The output from a
program generator for example might contain errors and it is always possible that BASIC
text may become corrupted on tape or microdrive! Additionally, it is perfectly possible
for erroneous compiler directives to be entered by the user. For these reasons, BLAST
rigorously checks the syntax of any text submitted to it.
However, things are not quite as simple as this. It may be that a statement which appears
incorrect to BLAST while it is compiling, is in fact a perfectly proper extension to
BASIC, possibly of the sort provided by certain commercial extended BASIC packages.
Such extensions are perfectly permissible under BLAST, the problem is simply that at
compile time, BLAST does not have sufficient information to distinguish them from
genuine errors.
The solution adopted by BLAST is as follows. Whenever BLAST encounters a possible
syntax error, it displays the offending text, issues a warning and waits for any key to be
struck. Compilation then continues. If it turns out at run time that the questionable
statement was in fact an error, the run will abort with the message:
NONSENSE IN BASIC
2) Run time errors
At run time, with a single exception, a BLASTED program will respond with errors such
as NUMBER TOO BIG or RETURN WITHOUT GOSUB in exactly the same way as
the interpreter. The exception concerns the error SUBSCRIPT WRONG. In order to
avoid continual checking of array subscripts at run time, the BLAST RTS will ignore this
error. If subscripts go out of range, the results will be unpredictable.

3) I/O Errors
If BLAST encounters a problem while attempting to read or write files to tape or
microdrive, it will usually respond with the message I/O ERROR. This message can be
displayed as the result of a number of different error conditions. For example the source
file can not be found, the microdrive cartridge is full or the cartridge is corrupt. Certain
types of I/O error are however undetectable and will simply cause faulty or aborted
compilation. For a fuller explanation see TROUBLE-SHOOTING.

COMPILER DIRECTIVES
BLAST provides certain compilation options which can be invoked by means of compiler
directives. These appear in special REM statements of the form
REM! <compiler directive>
That is to say, all compiler directives are preceeded by REM!. The shreak (!) provides
an easy way for BLAST to tell whether or not to ignore the text following REM. There is
one other kind of special REM statement recognised by BLAST; REM% causes the text
of a comment to be passed to the interpreter at run time (see BLAST and user written
machine code).
The compiler options available under BLAST are as follows:
Directive Meaning
1) REM! PCODE Have BLAST generate p-code until told otherwise.
 This is the default setting.
2) REM! MACHINE CODE Have BLAST generate machine code until told
 otherwise.
3) REM! AUTORUN Cause the object program to run automatically when
 loaded. This must be the first line of the program.
 AUTORUN programs when compiled to microdrive
 will include an additional saved variable file.
 (see AUTORUN AND SAVED VARIABLES)

TROUBLE-SHOOTING
If a program fails to compile or run apparently without cause, the first thing to try is to
remove anything which is not strictly BASIC. All user written machine code and calls
should be removed along with all compiler directives such as REM! MACHINE CODE
and REM! AUTORUN.
Occasionally, BLAST may object to a line of BASIC which appears perfectly correct on
inspection. If this happens, BLAST will stop with the message
WARNING - HIT ANY KEY. As soon as a key is pressed, BLAST will arrange for that
statement alone to be passed to the interpreter at run time and then continue with the
compilation. Although this event will be flagged by BLAST as a warning, it will make no
difference to the running of the final compiled program. BLAST may also be forced to
pass a line to the interpreter by inserting REM% at the beginning of the line. This can be
useful if a particular line seems to be giving trouble when compiled. This facility can not
be used with user defined functions, or DATA statements.
If a program fails to run successfully when compiled, the problem maybe that the source
program contains saved variables. Methods for dealing with these are explained under
AUTORUN AND SAVED VARIABLES.
Quite a frequent cause of program failure at run time is that the program contains POKE
statements which corrupt the BLASTed program. Remember that short programs can
increase in size when BLASTED and that what was once free RAM may be free no
longer. Often programmers are not aware that their programs are POKEing where they
shouldn’t. If you wish to POKE do it above RAMTOP.

Very occasionally an extremely large BASIC program may cause BLAST to run out of
space to hold all the program’s variables. If this happens one of two messages will appear
1) 100 MANY VARS
Solution: reduce the number of variables.
2) NAMES TOO BIG
This means that the space allocated to holding the text of variable names is exhausted.
Solution: reduce the length of some of the variable names.

Tape and Microdrive errors
BLAST makes extensive use of the Spectrum’s I/O. Unfortunately this is not always
reliable and may cause undetected compilation errors. It is for example possible for a
microdrive which works correctly with many programs to fail when used with BLAST. If
BLAST can detect the error it will respond with the message I/O ERROR. Often
however the error is undetectable and the program will simply fail. If a program fails to
compile or run correctly either to tape or to microdrive it is recommended that the
compilation is attempted a second or even a third time.

Loading problems
In some circumstances, a program that has been compiled to tape or microdrive may fail
to load correctly. Either the microdrive goes on whirring endlessly or the tape continues
to the end with the computer still in loading mode. The probable reason for this
malfunction is that there is insufficient room in memory for the object program. Try
using the reset button on the side of the computer and attempting the load again. If this
does not solve the problem it is possible that the object code will not fit into memory.
This is unlikely to occur with a p-code file but is quite possible if the program has been
compiled to machine code which tends to consume more memory than BASIC source
code.
Another potential source of problems is the possibility that the source program is corrupt
in some way. BLAST is as tolerant as possible of corrupt programs but there are certain
types of corruption which will prevent a program from compiling even though it runs
under the interpreter. Commercial programs which have been unprotected sometimes
exhibit this problem. In particular, the system variables which give program and variable
sizes must be accurate.

REDUCING LOADING TIMES
The COPIER (see copying BLASTED programs) is useful in another way:
Programs compiled microdrive to microdrive using a single cartridge can often be slow to
load due to the format in which the code is stored. If the COPIER is used to copy a
compiled program, the new copy will load more quickly than the original. Copied
programs can of course themselves be re-copied.

COMMAND SUMMARY
The following commands are recognised by BLAST in its initialised state. All commands
may be typed in either upper or lower case.
Remember that a NEW command will clear BLAST entirely from memory. If you wish
merely to clear a BASIC program from memory, use *N.
1) COMPILE syntax: *C
Compile a BASIC program using the previously set input device (see *I) for the source
code and the previously set output device (see *O) for the object code. The default
setting for input and output is RAM.
2) RUN syntax: *R
Run a compiled program. The *R command is used only to run a compiled program
that has been compiled into RAM. If tape or microdrive has been selected for output the
object program should be loaded from this device and executed with RUN.
3) INPUT syntax: *I
Set the device from which BLAST is to read the source code for a compilation. BLAST
will prompt with the message
ACCEPT INPUT FROM: RAM, TAPE, MICRODRIVE
for which the responce is R, T or M. The default device is RAM.
4) OUTPUT syntax: *O
Set the device to which BLAST is to write the object code for a compilation. BLAST will
prompt with the message
ACCEPT OUTPUT FROM: RAM, TAPE, MICRODRIVE
for which the responce is R, T or M. The default device is RAM.
5) QUIT syntax: *Q
Quit BLAST and release the portion of memory used by BLAST for other code.

THE BLAST TOOLKIT
BLAST comes complete with a comprehensive toolkit designed to aid program
development.
The TOOLKIT is the first program on side B of the cassette. To load the toolkit type
LOAD "TOOLKIT" <enter>
The TOOLKIT will autorun and sign on with the message
BLAST TOOLKIT (c) OCSS 1983
Like the compiler, the TOOLKIT loads into high RAM and sets RAMTOP below itself.
The TOOLKIT reduces user RAM by approximately 3.5k.
Note: The TOOLKIT cannot co-reside in RAM with the BLAST compiler.
The facilities available are listed below. Each function is executed by entering an asterix
(*) followed by the single letter command given and the indicated parameters.
In the following n, n1 and n2 denote integers.
The part of the program over which a given command is to take effect is specified by a
line range as follows.
nl-n2 means lines nl to n2 inclusive
nl- means from line n1 to the end of the program
-n2 means from the beginning of the program to n2, including n2.
If a line range is omitted altogether, the toolkit assumes that the line range intended is the
whole program.
A dot (.) may be used to stand for the current line.
If the line range is omitted from a toolkit command, any comma which would normally
follow the line range should still be included.

LINE COMMANDS
1) EDIT syntax: *E n1
The line n1 is displayed for editing.
2) COPY syntax: *C n1,n2
Copy line n1 to line n2, over-writing any existing line.
3) DELETE syntax: *D n1
Delete line n1.
4) MOVE syntax: *M nl,n2
Move line nl to line n2, deleting line n1.

BLOCK COMMANDS
1) COPY syntax: *C <line_range>,n
Copy lines the line range to line n, over-writing any existing lines. The lines will be
numbered consecutively from n.
2) DELETE syntax: *D <line_range>
Delete the line range. *D on its own will delete the entire program leaving all variables
intact.
3) MOVE syntax: *M <line_range>,n
Move the line range to n, deleting the original lines.
4) RENUMBER syntax: *R <line_range>,nl,n2
Renumber the line range starting at n1 with step n2. The default for n2 is 10.
Renumber will not renumber more than 1792 lines at a time. Larger programs can of
course be renumbered in two or more stages.

STRING FUNCTIONS
1) FIND syntax: *F <line_range>,string
Search the line range for the first occurrence of the string.
2) SEARCH AND REPLACE syntax: *S <line_range>,stringl,string2
Search the line range for string1 and replace it with string2. The new line will be checked
for syntax. If there is an error, the first line that contains the error will be displayed. Any
previous lines in which the search and replace was successful will remain modified. Note
that the replacement string may not be null.
*F & *S commands:
It is not directly possible to enter BASIC keywords into these commands. There is,
however a trick which will solve this problem. When a keyword is required, first type
THEN and after, the keyword. Now move the cursor back and delete the THEN.

OTHER COMMANDS
1) TRACE syntax: *T
When the program is run display the linenumber of the statement currently being
executed. The space key can be used to slow down execution and SHIFT O to hold up
execution.
Trace does not take a linenumber. *T will turn on the trace facility which will be
operative thereafter during any program run; trace can be turned off with *U
2) KILL syntax: *K
Delete all REM statements in the program not beginning with ! or %
3) WRITE syntax: *W <line_range>,<filename>
Save the line range to cassette under <filename> (maximum 10 characters).
4) BLAST SAVE syntax: *B <filename>
Save the program in a form suitable for compilation from tape by BLAST. The program
will be saved in blocks together with the information BLAST needs to compile it.
The *B command (BLAST SAVE) is intended for use with cassette only. BLAST
can compile a program which has been saved to microdrive in the normal way.
5) VARS syntax: *V
List various useful system variables including the amount of memory free.
6) LIST syntax: *L
List all BASIC variables together with their values.
7) JOIN syntax: *J <line number>
Join the indicated line to the next.
8) GLOBAL ON/OFF syntax: *A/*G
In normal operation the find and substitute functions will stop and wait for a key to be
pressed after each find or substitution. To turn this feature off type *G and to turn it on
again use *A
9) QUIT syntax: *Q
Quit the toolkit.

Re-initialising the toolkit
RANDOMISE USR 61950 will reactivate the toolkit after a *Q.

Loading the toolkit while a program is in memory
Type the following:
CLEAR 61946
LOAD "tkcode" CODE
RANDOMIZE USR 61950

HIGH SPEED INTEGER ONLY COMPILATION
All issues of BLAST marked issue 4.0 or above include an additional high speed integer
only compiler called IBLAST. This compiler is designed to produce much faster code
than BLAST for programs that do not make use of floating point numbers. IBLAST is
located on side B of the BLAST tape directly after the TOOLKIT. It is loaded and used in
exactly the same way as BLAST.

What kind of programs can be compiled with IBLAST?
All numeric variables and arrays used in a program compiled with IBLAST are assumed
to be of integer type. These variables can only hold signed whole numbers in the range
 -32768 to +32767. Additionally a compiler directive may be used to cause IBLAST to
treat variables as unsigned integers in the range 0 to 65535.
If you are not sure whether or not a program will work under IBLAST the best solution is
to try the experiment. However, bear in mind that even though a program may appear to
compile successfully this does not necessarily mean that it will behave as expected at run
time. For example a statement like LET A = (50000 + 50000)/10 would
require a partial result when the bracketed expression is evaluated of 100000 this is out of
range and will evaluate incorrectly.
Because IBLAST can only deal with integers, there are certain operations which are no
longer useful or that behave differently in an IBLASTed program. These are as follows:
1) The following functions will give a RUN time error if compiled with IBLAST
PI, SIN, COS, TAN, ASN, ACS ,ATN, LN, EXP, SQR and exponentiation
2) No string contained in a VAL or VAL$ argument may contain variable or array
names. For example VAL("A + 1") will not work although VAL(A$) where
a$ = "123" is perfectly allowable. Any attempt to access a variable in this way will
give rise to a VARIABLE NOT FOUND error at run time.
3) Division (slash) will round to the nearest integer. e.g. 7/2 = 3.
4) BEEP, CIRCLE, DRAW and RND
In Spectrum BASIC the above commands require fractional arguments. Because of this
they work slightly differently under IBLAST. Both parameters of BEEP, the third
parameter of CIRCLE and the (optional) third parameter of DRAW accept integers
which are internally divided by 100 before being submitted to the graphics routine for
execution. This means that these parameters should be 100 times larger than they would
be in Spectrum BASIC in order to run correctly under IBLAST. The RND function
returns a random integer within the full integer range.

The SIGNED and UNSIGNED directives
The compiler directive REM! UNSIGNED will cause IBLAST to treat all numeric
objects as laying in the range 0 to 65535.
The compiler directive REM! SIGNED will cause IBLAST to treat all numeric objects
as laying in the range -32768 to +32767.
The default is SIGNED.

Some notes on the treatment of integers.
It may be helpful in some cases for users to understand precisely what happens when
IBLAST integers are manipulated. We first discuss the situation that obtains when the
UNSIGNED directive is in force.
All numeric variables and arrays are held in a 16 bit word of memory. Such variables can
hold numbers between 0 and 65535. Since IBLAST does not check for overflow,
operations which cause variables to go out of range may give incorrect results. Let us
consider the statement LET A = 65530 + 10. Since the expression evaluates to
65540, the answer will not be correct. What will actually happen is that the variable A
will "wrap around" that is, as soon as it reaches 65535 and is incremented by one it will
start over at zero. The result of the expression will therefore be 4. Equally, if A =0 and
is then decremented by one, the wrap around will occur the other way about and the
result will be 65535.
When the SIGNED directive is in force (as it is by default) numbers obey 2’s
compliment rules that is, any number N in the range 32768 <= N <= 65535 is treated as a
negative number equal to N-65536. This allows certain operations such as comparisons to
manipulate negative numbers correctly. Of course wrap around still occurs and should be
avoided except when specifically required.
It should be noted that even in UNSIGNED mode negative constants are still allowed
and will be converted to positive integers using the 2’s complement rule quoted above.
Because of the wrap around rules, this will normally yield the correct result in a
calculation. Any floating point constant will be rounded down to the nearest integer.
In the absence of the REM! UNSIGNED compiler directive, all but three operations
will assume a signed format. The three exceptions are PEEK, POKE and IN where
parameters are assumed to be unsigned; this allows PEEK, POKE and IN to access
the whole of memory.

Compatibility with the interpreter
Unlike BLAST, some versions of IBLAST do not hold their variables in the same format
as the interpreter. This has certain consequences.
1) No statement passed to the interpreter (see BLAST and user written machine code)
may contain references to variables or array elements.
2) No Interface 1 command may contain references to variables or array elements.
3) So that these may be identified, IBLAST will still write a .V file containing any saved
variables when compiling to microdrive using the AUTORUN directive. These will be
ignored by the IBLASTed program.
4) Variables can not be SAVed or MERGed.
There is of course no reason why the value of variables may not be passed to interpreted
statements using POKE and PEEK.

Errors
In order to allow IBLASTed programs to run at maximum speed, the IBLAST run time
system does not perform as many run time checks as BLAST or interpreted BASIC.
Programs should be checked carefully under the interpreter before being submitted to
IBLAST.

APPENDIX 1

BLAST MEMORY MAP

P-RAMT --------------------------------------

USER DEFINED GRAPHICS
UDG --------------------------------------

BLAST
RAMTOP --------------------------------------

GOSUB STACK
MACHINE STACK

spare RAM

STKEND --------------------------------------

CALCULATOR STACK
STKBOT --------------------------------------

WORKSPACE
WORKSP --------------------------------------

EDITING AREA
E LINE --------------------------------------

BASIC VARIABLES
VARS --------------------------------------

BASIC PROGRAM
PROG --------------------------------------

CHANNEL INFORMATION
CHANS --------------------------------------

MICRODRIVE MAPS
INTERFACE 1 SYSTEM VARIABLES

SYSTEM VARIABLES
PRINTER BUFFER

ATTRIBUTES
DISPLAY FILE

ROM

RUN TIME MEMORY MAP

P-RAMT --------------------------------------

USER DEFINED GRAPHICS
UDG --------------------------------------
RAMTOP

GOSUB STACK
MACHINE STACK

spare RAM

STKEND --------------------------------------

CALCULATOR STACK
STKBOT --------------------------------------

WORKSPACE
WORKSP --------------------------------------

EDITING AREA
E LINE --------------------------------------

RUN TIME VARIABLES
VARS --------------------------------------

BLASTED PROGRAM
PROG --------------------------------------

CHANNEL INFORMATION
CHANS --------------------------------------

MICRODRIVE MAPS
RUN-TIME SYSTEM

INTERFACE 1 SYSTEM VARIABLES

SYSTEM VARIABLES
PRINTER BUFFER
ATTRIBUTES

DISPLAY FILE
ROM

	BLAST
	COPYRIGHT
	DISCLAIMER
	CONTENTS
	INTRODUCTION
	WHAT IS A COMPILER?
	1) Interpreters
	2) Compilers

	TERMINOLOGY
	PRODUCT DESCRIPTION
	GETTING STARTED
	BLASTING LARGE PROGRAMS
	Setting the input and output device
	Microdrive BLASTING
	Tape BLASTING
	Tape to tape BLASTING
	Notes

	P-CODE AND MACHINE CODE
	Caution

	BLAST AND USER WRITTEN MACHINE CODE
	COMPATABILITY WITH SPECTRUM BASIC
	Calling a BLASTED program as a subroutine from BASIC

	AUTORUN AND SAVED VARIABLES
	COPYING BLASTED PROGRAMS
	Microdrive copying
	Tape copying

	ERRORS
	1) Compile time errors
	2) Run time errors
	3) I/O Errors

	COMPILER DIRECTIVES
	TROUBLE-SHOOTING
	Tape and Microdrive errors
	Loading problems

	REDUCING LOADING TIMES
	COMMAND SUMMARY
	THE BLAST TOOLKIT
	LINE COMMANDS
	BLOCK COMMANDS
	STRING FUNCTIONS
	OTHER COMMANDS
	Re-initialising the toolkit
	Loading the toolkit while a program is in memory

	HIGH SPEED INTEGER ONLY COMPILATION
	What kind of programs can be compiled with IBLAST?
	The SIGNED and UNSIGNED directives
	Some notes on the treatment of integers.
	Compatibility with the interpreter
	Errors

	APPENDIX 1
	BLAST MEMORY MAP
	RUN TIME MEMORY MAP

