48K Spectrum, Spectrum 128
& Spectrum Plus 2

High Quality Software

Corrections to the HiSoft Pascal for
the ZX Spectrum Manual
(4th Edition)

We would like to apologise for the following omissions from your HiSoft
Pascal manual: :

Page 3 Making a backup

After you are asked Would you like 51 Columns? you will be asked three
further questions; just hit Return for each of these.

Page 5

In fact you won't be asked if you would like 51 columns when entering the
example programs.

Page ¢

When you load the compiler for the first time you will be asked three
questions, normally just press Return for each. The following describes
when you might wish to enter something different:

Top of RAM ?

The default for this is as described on Page 9 of the manual. You will need
to use a different value if you wish to use a machine code routine at the
top of memory whilst the compiler is loaded.

Top of RAM for 'T'ranslate ?

This is the top of memory when a stand-alone program produced by the
Translate command is running. This defaults to the value used for the
Top of RAM. You would change this if you are using a machine code
routine only when running a translated program.

Symbol Table Size?

This is the amount of memory (in bytes) used by the compiler's symbol
table. It defaults to one sixteenth of the available memory (about 1300
bytes). If you run out of symbol table space when compiling you will need
to increase this.

Page 76

The turtle graphics example progams should all start their main sections
at line 1390 not 1360.

We hope that these corrections will enable you to use HiSoft Pascal to the
full.

HiSoft Pascal

Fast, Interactive Compiler

System Requirements:
ZX Spectrum 48K & 128K, ZX Spectrum Plus, ZX Spectrum Plus 2.
Opus and Disciple versions supplied on disk.

Copyright © HiSoft 1987

HiSoft ZX Pascal Manual
1st Edition July 1983

2nd Edition August 1984

3rd Edition October 1985

4th Edition December 1987

Set using an Apple Macintosh™, Microsoft Word™ and Apple Laserwriter™.

All Rights Reserved Worldwide. No part of this publication may be reproduced or
transmitted in any form or by any means, including photocopying and recording,
without the written permission of the copyright holder. Such written permission
must also be obtained before any part of this publication is stored in a retrieval system
of any nature.

It is an infringement of the copyright pertaining to HiSoft Pascal and its associated
documentation to copy, by any means whatsoever, any part of HiSoft Pascal for any
reason other than for the purposes of making a security back-up copy of the object
code.

Table of Contents

Section 0 Introducing HiSoft Pascal 1
0.0 Getting Started 1
0.1 Loading HiSoft Pascal 2
0.3 Making a Backup 3
0.4 Backing-up the Turtle Graphics 4
0.5 Plecse ... 4
0.6 Your First HiSoft Pascal Program 4
0.7 Scope of this manual 6
0.8 Compiling and Running 7
0.9 Technical Notes 8

Section 1 Syntax and Semantics 11
1.1 IDENTIFIER 11
1.2 UNSIGNED INTEGER 1
1.3 UNSIGNED NUMBER 12
1.4 UNSIGNED CONSTANT 13
1.5 CONSTANT 13
1.6 SIMPLE TYPE 14
1.7 TYPE 14

1.7.1 ARRAYs and SETs 15
1.7.2 Pointers 15
1.7.3 RECORDs 16
1.8 FIELD LIST 16
1.9 VARIABLE 17
1.10 FACTOR 18
1.11 TERM 18
1.12 SIMPLE EXPRESSION 19
1.13 EXPRESSION 19

Table of Contents

Hisoft ZX Pascal User Manual

1.14 PARAMETER LIST | 20
1.15 STATEMENT 20
1.16 BLOCK 23
1.17 PROGRAM 24
1.18 Strong TYPEing 25

|
’ Section 2 Predefined Identifiers 27
|

2.1 Constants 27
2.2 Types 27
2.3 Procedures and Functions 27

2.3.1 Input and Output Procedures 27

2.3.2 Input Functions 32

2.3.3 Transfer Functions 32

2.3.4 Arthmetic Functions 34
2.3.4.1 ABSX)........c00n o P L e T T S TP T, e A g4

2R A ERAETERL. .coim s svonssseioamumemssssssssosssuostsins 34

HiSoft ZX Pascal User Manual Table of Conlenfs

2.3.5 Further Predefined Procedures 35
2.3.5.1 NEW(D) ..coovrrurmermsmssssssmmssssssssssssassssssasasasssssssssasasssssssss 30

2.3.5.2 MARKIV])......ccccoessmsonsasscsnss RS S SR 35
2.3.5.3. RELEASEIV]). ...ciconsonessssissisisusnisosssemsssssissrrasassrsnsans 36
2.3.5.4 INLINE(C1,C2,C3,......... | T ————— 36
2.3.5.8 TOUT (NAME,START,SIZE)ccoecrvuucrnrernnsnnn 37
2.3.5.9 TIN (NAME,START)....ccccornimmmsmmmmesssssssssssaressssss 3 1
2.3.5.10 OUTIP.C) .corccnsneimmiansinsissmmisiimimmiminisss i

2.3.6 Further Predefined Functions 38

2.3.6.2 SUCCX) vvcomrroeerssesmssmssmmsssssssssssssssssssissssssesisss 38
2.3.6.3 PRED(X)......cooovmesssmssssessssssssessssssssssssssssssssssssosserssss 38
5884 ODDBD e
2.3.6.8 ADDR(V) .covercorsersssssssssmssssssessesssseesssssessnssssnns 39
2.3.6.7 PEEK(X.T) oovceroresssssmssmmsssmsssamssmssssssssssssssssss 39
SRE T BRI cusisimisasiismison30

Table of Conlents HiSoff ZX Pascal User Manual

Section 3 Comments and Compiler Options 41

3.1 Comments 4]
3.2 Compiler Options 41
Section 4 The Integral Editor 45
4.1 Introduction to the Editor 45
4.2 The Editor Commands 46
4.2.1 Text Insertion 46
4.2.2 Text Listing 47
4.2.3 Text Editing 48
4.2.4 Tape/Microdrive/Disk Commands S0
4.2,5 Compiling and Running from the Editor 52
4.2.6 Other Commands 53
4.3 An Example of the use of the Editor 55
Appendix 1 Errors 57
A.1.1 Error numbers generated by the Compiler 57
A.1.2 Runtime Error Messages 59
Appendix 2 Reserved Words and
Predefined Identifiers 60
A 2.1 Reserved Words 60
A 2.2 Special Symbols 60
A 2.3 Predefined Identifiers 61
‘HiSoff ZX Pascal User Manual Table of Conlenfs

Appendix 3 Data Representation & Storage 62

A 3.1 Data Representation 62
A 3.1.1 Integers &2
A 3.1.2 Characters, Booleans and other Scalars 62
A 3.1.3 Reals &3
A 3.1.4 Records and Amrays &4
A 3.1.5 Sets 65
A 3.1.6 Pointers 65
A 3.2 Variable Storage at Runtime 65
Appendix 4 Some Example HiSoft Pascal
Programs 67
Appendix 5 Turtle Graphics and Spectrum
Sound and Graphics 71
A 5.1 Turtle Graphics 71
A 5.2 Sound & Graphics with the ROM 78
Bibliography 81

Table of Confenls HiSoft ZX Pascal User Manual

Section 0
Infroducing HiSoft Pascal

0.0 Geiting Started

Congratulations! You are now the owner of an almost complete implementation
of the Standard Pascal programming language for the ZX Spectrum. HiSoft
Pascal is a very powerful tool that enables you to build highly structured and
easy-to-understand programs that run very quickly. However, as with any
computer language, it is going to take you some time to get used to using
HiSoft Pascal. We strongly recommend that you adopt the following procedure
when using this package for the first time:

. read the rest of this Section very carefully, trying out the example
programs until you understand how they are created, compiled and
executed.

. now read the editor section of this manual (Section 4) and try out the
example at the end of the Section.

. go through the above steps until you feel comfortable using the editor
and compiling/running a Pascal program.

. if you come to a complete halt in understanding what is happening,
leave the computer and do something else for a while and then return
and start from scratch - it is easy to get confused when operating in a
new environment.

. if you are convinced that your problems are not of your own making
then please do not hesitate to contact HiSoft during our technical
support hour (3-4pm weekdays); our programming staff will be available

to you.

HiSoft Pascal is a fast, easy-to-use and powerful version of the Pascal language
as specified in the Pascal User Manual and Report (Jensen/Wirth Second
Edition). Omissions from this specification are as follows:

FILEs are not implemented although variables may be stored on tape,
microdrive and disk (Opus Discovery and Disciple disk systems only). A
RECORD type may not have a VARiant part. PROCEDUREs and FUNCTIONs are

not valid as parameters.
HiSoft ZX Pascal User Manual Page 1

A Spectrum Plus 3 version of HiSoft Pascal exists which removes most of the
above restrictions.

Many extra functions and procedures are included to reflect the changrtng
environment in which compilers are used; among these are POKE, PEEK, TIN,
TOUT and ADDR.

The compiler occupies approximately 12K of storage while the runtimes take
up roughly 4K and the editor uses 2k. Thus, typically, the total size of the
package is roughly 19K, leaving the rest of your Spectrum's memory for the
Pascal source and object programs.

0.1 Loading HiSoft Pascal

Loading from Cassette

Load the supplied cassette into your cassette recorder with HiSoft Pascal
uppermost and type:

LOAD "" <ENTER>
on the Spectrum, and
<PLAY>

on your tape recorder.

Loading from Disk

Do not try to load HiSoft Pascal from the master disk that we supply, first
make a backup (see below) onto another disk.

Once you have done this you can load the compiler from disk, using the name
under which you saved it (see Making a Backup below), as a code file. You can
load it at any convenient address but we would recommend 24700 as the
lowest practical address.

Page 2 HiSoft ZX Pascal User Manual

0.3 Making a Backup

Making a Backup from Cassette

Load up HiSoft Pascal from cassette using the default address (i.e. simply type
LOAD ""). Once it is loaded, you will be prompted with the question:

Would you like 51 columns?
Answer with a Y and, once in editor mode (with a > prompt) type:
B <ENTER> to get back to BASIC.

You can now make a backup to cassette or microdrive with the following
commands:

SAVE "HPCODE" CODE 24700,19200 <ENTER> to cassette, or
SAVE *"M";1;"HPCODE" CODE 24700,19200 <ENTER> to microdrive 1
To load the compiler back into memory at any subsequent time use:

LOAD "™ CODE <ENTER> from cassette, or
LOAD *"M";1; "HPCODE" CODE <ENTER> from microdrive.

Once loaded, you can enter the compiler at its start address. This is normally
24700, so use:

RANDOMIZE USR 24700 <ENTER>
If you have come out into BASIC and want to re-enter Pascal preserving any

program you have entered, then execute Pascal at the start address + 3 i.e.
normally 24703.

Making a Backup from Disk

If you have purchased HiSoft Pascal on Opus Discovery or Disciple disk, firstly
format a new disk on which to copy your backup. Then insert your HiSoft
Pascal master disk in drive A of your disk system and type:

LOAD “HPCODE" CODE <ENTER>

When the code of the compiler has loaded remove the master disk, insert your
freshly-formatted blank disk and type:

SAVE *"M";1;"HPCODE" CODE 24700,19200 <ENTER>

'HiSoft ZX Pascal User Manual Page s

To load the compiler back into memory at any subsequent time use:
LOAD *"M";1;"HPCODE" CODE <ENTER>

You can, of course, use the shorter forms of the LOAD and SAVE commands for
the disk systems if you wish.

Once loaded, you can enter the compiler at its start address. This is normally
24700, so use:
RANDOMIZE USR 24700 <ENTER>

If you have come out into BASIC and want to re-enter Pascal preserving any

program you have entered, then execute Pascal at the start address + 3 l.e.
normally 24703.

0.4 Backing-up the Turtle Graphics

To make a copy of the turtle graphics routines you should enter the editor, use
the G command to get the text of the graphics routines and then use the P
command to save out the text onto cassette, microdrive or disk. See Section 4
for details of the P and G editor commands.

0.5 Please ...

Please note that we allow you to make a backup of HiSoft Pascal for your own
use so that you can protect your valuable investment and program with
confidence. Please do not copy HiSoft Pascal to give away or sell to your
friends; we supply very reasonable-priced software with a full after-sales
service but if enough people copy our software illegally we shall not be able to
continue this - please buy, don't steal/

0.6 Your First HiSoft Pascal Program

To whet your appetite, and to give you a feel for the package. we now give an
example of using the editor and compiler to create, compile and run a small
Pascal program.

Firstly, let's load the Pascal into the computer: using your backup tape or disk
type:

CLEAR 24699 <ENTER>
LOAD "" CODE <ENTER> and start your tape recorder, or
LOAD *"M";1;"HPCODE"™ CODE <ENTER>

with your backup disk inserted.

Page 4 HiSoft ZX Pascal User Manual

Once the Pascal has been loaded into the computer type:
RANDOMIZE USR 24700 <ENTER>
You will be asked:

Would you like 51 columns?

Type Y or y to use 51-column editing, N or n to edit using the standard 32
columns. Once you have answered this question, the HiSoft Pascal editor will
appear, letting you know it's there with a message and the > prompt. Let's type
the following:

I10,10 <ENTER>

you should now be prompted with the number 10 ; this is a line number and
what you subsequently type will be entered into the Pascal textfile at line 10,
typing <ENTER> will terminate the line and then you will be prompted with
line number 20 and so on. You can continue to enter text like this (with the
line numbers being generated automatically for you) until you press the key
combination <CAPS SHIFT> and 1 or <EDIT>.

So, type the following program, remembering that you do not need to type in
the line numbers:

10 PROGRAM HELLO;

20 BEGIN

30 WRITELN('HELLO WORLD!');
40 END.

50 <EDIT>

Right, to compile this program type:

C <ENTER>

You should see a listing of you program appear with some extra numbers at the
front - this is a compiler listing. If the program compiles correctly, the
message Run? will appear; answer Y to this question and the program will run
and print out:

HELLO WORLD'! and return to the editor.

You can now run the program again by:

R <ENTER>

HiSoft ZX Pascal User Manual Page 5

If your program did not compile correctly and produced an "“ERROR® message
then press E followed by <ENTER> to get back to the editor, then press:

L <ENTER>

to list your program and compare it with the one given. If you see a mistake in
any line then simply type that line number, then a space and then the correct

text followed by <ENTER>.
Now, let's try another program:

I10,10 <ENTER>

10 PROGRAM CHARTOASC;

20 VAR CH : CHAR;

30 BEGIN

40 REPEAT

50 WRITE('ENTER A CHARACTER ');
60 READLN;

70 READ (CH) ;

80 WRITELN(CH,"' IS ',ORD(CH),' IN ASCII.');
90 UNTIL CH=' ';

100 END.

110 <EDIT>

Now compile (C) and run this program; it will prompt you to enter a

“character, followed by <ENTER> and then print out the ASCII equivalent of that

character. This will repeat until you enter a space as the character.

For those who know Pascal well, we would encourage you to study the use of
READLN and READ in the above example of reading characters - also study the
relevant sub-sections (2.3.1.4 and 2.3.1.9).

We hope that the above examples have given you some idea of how to use
HiSoft Pascal; now read the rest of this section and Section 4. Good Luckl!

0.7 Scope of this manual

This manual is not intended to teach you Pascal; you are referred to the
excellent books given in the Bibliography if you are a newcomer to

programming in Pascal.

This manual is a reference document, detailing the particular features of
HiSoft Pascal.

Section 1 gives the syntax and the semantics expected by the compiler.

Page 6 HiSoft ZX Pascal User Manual

Section 2 details the various predefined identifiers that are available within
HiSoft Pascal, from CONSTants to FUNCTIONS.

Section 3 contains information on the various compiler options available and
also on the format of comments.

SecﬂonAshowahowtnusetheunceditorwhichlaanlntzgralpartnfﬂlsoﬁ
Pascal

The above Sections should be read carefully by all users.

Appendix 1 details the error messages generated both by the compiler and the
runtimes.-

Appendix 2 lists the predefined identifiers and reserved words.

Appendix 3 gives details on the internal representation of data within HiSoft
Pascal - useful for programmers who wish to get their hands dirty.

Appendix 4 gives some example Pascal programs - study this if you experience
any problems in writing HiSoft Pascal programs.

Appendix 5 explains the use of the Turtle Graphics package supplied with
HiSoft Pascal and shows you how to call the Spectrum ROM.

0.8 Compiling and Running

For details of how to create, amend, compile and run a program using the
integral line editor see Section 4 of this manual.

Once it has been invoked the compliler generates a listing of the form:

Xxxx nnnn text of source line
where:

xxxx is the address where the code generated by this line begins. nnnn is the
line number with leading zeroes suppressed.

If a line contains more than 80 characters then the compiler inserts new-line
characters so that the length of a line is never more than 80 characters.

The listing may be directed to a printer, if required, by the use of option P
(see Section 3).

HiSoft ZX Pascal User Manual Page7

You may pause the listing at any stage by pressing <CAPS SHIFT> and <SPACE>
subsequently use <CAPS SHIFT> 1 to return to the editor or any other key to
restart the listing.

If an error is detected during the compilation then the message "ERROR® will
be displayed, followed by an up-arrow (A), which points after the symbol which
generated the error, and an error number (see Appendix 1). The listing will
pause; hit E to return to the editor to edit the line displayed, P to return to the
editor and edit the previous line (if it exists) or any other key to continue the
compilation.

If the program terminates incorrectly (e.g. without END.) then the message No
more text will be displayed and control returned to the editor.

If the compiler runs out of table space then the message No Table Space will
be displayed and control returned to the editor. This is very unlikely to

happen.

If the compilation terminates correctly but contained errors then the number
of errors detected will be displayed and the object code deleted. If the
compilation is successful then the message Run? will be displayed; if you desire
an immediate run of the program then respond with Y, otherwise control will
be returned to the editor.

During a run of the object code various runtime error messages may be
generated (see Appendix 1). You may suspend a run by using <CAPS SHIFT> and
<SPACE>; subsequently use <CAPS SHIFT> 1 to abort the run or any other key to
resume the run.

0.9 Technical Notes

Use of the Spectrum Keyboard

When using HiSoft Pascal, the keyword entry scheme of the 48K Spectrum is
not used. For example, to get SIN simply type the individual letters, S then |
then N. <CAPS SHIFT> and <SYMBOL SHIFT> work in the normal way so that to
get ' (single quote) you would use <SYMBOL SHIFT> and 7. Extended mode is not
used. Those characters that are normally reached using Extended mode are
accessed by typing <SYMBOL SHIFT> and the relevant key e.g. <SYMBOL SHIFT> Y
gives [(square bracket). Note that the Pascal not equals operator <> is type as
two characters, < then >. Finally, the A character that is used in pointers is
<SYMBOL SHIFT> H.

Plus 2 and Plus 3 owners should note that to get the (,), { or] characters, you
should hold down <SYMBOL SHIFT> and press Y, U, F or G respectively.

Page 8 HiSoft ZX Pascal User Manual

Memory Considerations

The compller is, by default, loaded at address 24700 but you can load it at any
practical address of your choice, say x, using:

CLEAR x-1 <ENTER>
LOAD "™ CODE <ENTER>
RANDOMIZE USR x <ENTER>

The cold start address will then be x and the warm start address (the entry
point to preserve any Pascal text) will be X+3.

The lower you load the Pascal, the more space you will have for your Pascal
program but the less you will have for BASIC. The lowest possible value when
using microdrives without a BASIC loader is about 24598. On a cassette-only
machine you should be able to load the Pascal even lower.

51 or 32 Columns

Normally you should answer Y or y to the question:
Would you like 51 columns?

that appears on a cold start entry. If you don't, you will have an editor that uses
32 columns and 500 fewer bytes of RAM. This version may be used in the same
way as the 51 character version and you should use it if you find 51 characters
across the page difficult to read or you need that extra bit of memory or want
to use the user defined graphics.

In the 51 character version, the default value for the top of RAM is 65525
whilst it is UDG in the 32 column version. On the Opus 51 column package
the default top of RAM is 65522 because higher values cause problems for the
Opus catalogue code.

Note that the 51 character code supports only a subset of the Spectrum
control codes and does not support the keyword characters of the UDG. This
keeps it fast and compact.

HiSoft ZX Pascal User Manual “Poge?d

Using your Printer

1 HiSoft Pascal will print to any printer connected to Spectrum stream 3.

To get a compilation listing use the P option within your program (see Section
3 for details).

For a listing without compilation use <CAPS SHIFT> 3 followed by L <ENTER> and
| then <CAPS SHIFT> 3 again when the listing has finished. What <CAPS SHIFT> 3
does is toggle all the output between the printer and the screen.

To print from within your program use WRITE(CHR(16)); to toggle the printer
on and off as described in Section 2.

Page 10 HiSoft ZX Pascal User Manual

Section 1 Syntax and
Semantics

This section details the syntax and the semantics of HiSoft Pascal - unless
otherwise stated the implementation is as specified in the Pascal User Manual
and Report Second Edition (Jensen/Wirth).

1.1 IDENTIFIER

-

Only the first 10 characters of an identifier are treated as significant.

Identifiers may contain lower or upper case letters. Lower case is not
converted to upper case so that the identifiers HELLO, HELIo and hello are all
different. Reserved words and predefined identifiers may only be entered in
upper case.

1.2 UNSIGNED INTEGER

L_@ -

HiSoft ZX Pascal User Manual Page 11

1.3 UNSIGNED NUMBER

1o
—{ unsigned integer ~f digit '®_X..Iunsigmdinuger+..
O,

hex digit

Integers have an absolute value less than or equal to 32767 in HiSoft Pascal.
Larger whole numbers are treated as reals.

The mantissa of reals is 23 bits in length. The accuracy attained using reals is
therefore about 7 significant figures. Note that accuracy is lost if the result of a
calculation is much less than the absolute values of its arguments e.g. 2.00002 - 2
does not yield 0.00002. This is due to the inaccuracy involved in representing
decimal fractions as binary fractions. It does not occur when integers of
moderate size are represented as reals e.g. 200002 - 200000 = 2 exactly.

The largest real available is 3.4E38 while the smallest 1s 5.9E-39.

There is no point in using more than 7 digits in the mantissa when specifying
reals since extra digits are ignored except for their place value.

When accuracy is important avoid leading zeroes since these count as one of
the digits. Thus 0.000123456 is represented less accurately than 1.23456E-4.

Hexadecimal numbers are available for programmers to specify memory
addresses for assembly language linkage inter alia. Note that there must be at
least one hexadecimal digit present after the #, otherwise an error (*ERROR*
51) will be generated.

Page 12 HiSoft ZX Pascal User Manual

1.4 UNSIGNED CONSTANT

&4 constant identifier S

A

—— e unsigned number -

O O0—

Note that strings may not contain more than 255 characters. String types are
ARRAY (1..N) OF CHAR where N is an integer between 1 and 255 inclusive.
Literal strings should not contain end-of-line characters (CHR(13)) - if they do
then an *ERROR® 68 is generated.

The characters available are the full expanded set of ASCII values with 256
elements. To maintain compatibility with Standard Pascal the null character is
not represented as " ; instead CHR(0) should be used.

1.5 CONSTANT

e :
= h—

O —o(D—
cmum_.®

The non-standard CHR construct is provided here so that constants may be
used for control characters. In this case the constant in parentheses must be
of type integer e.g. CONST bs=CHR(8); cr=CHR(13);

HiSoft ZX Pascal User Manual Page 13

1.6 SIMPLE TYPE

p| typeidentifier + >

identifier >®—>

constant .- constant

Scalar enumerated types (identifier, identifier,) may not have more than 256
elements.

1.7 TYPE

ARRAY [simpie type] OF type

_@ () — >

(o —=E

The reserved word PACKED is accepted but ignored since packing already
takes place for arrays of characters etc. The only case in which the packing of
arrays would be advantageous is with an array of Booleans but this is more
naturally expressed as a set when packing is required.

Page 14 HiSoft ZX Pascal User Manual

1.7.1 ARRAYs and SETs

The base type of a set may have up to 256 elements. This enables SETs of CHAR
to be declared together with SETs of any user enumerated type. Note, however,
that only subranges of integers can be used as base types. All subsets of
integers are treated as sets of 0..255.

Full arrays of arrays, arrays of sets, records of sets etc. are supported.

Two ARRAY types are only treated as equivalent if their definition stems from
the same use of the reserved word ARRAY. Thus the following types are not
equivalent:

TYPE tablea = ARRAY[1..100] OF INTEGER;
tableb = ARRAY[1..100]) OF INTEGER;

So a variable of type tablea may not be assigned to a variable of type tableb.
This enables mistakes to be detected such as assigning two tables
representing different data. This restriction does not hold for the special case
of arrays of a string type, since arrays of this type are always used to represent
similar data. See Section 1.18 for a further discussion of this strong TYPEing.

1.7.2 Pointers

HiSoft Pascal allows the creation of dynamic variables through the use of the
Standard Procedure NEW (see Section 2). A dynamic variable, unlike a static
variable which has memory space allocated for it throughout the block in
which it is declared, cannot be referenced directly through an identifier since
it does not have an identifier; instead a pointer variable is used. This pointer
variable, which is a static variable, contains the address of the dynamic variable
and the dynamic variable itself is accessed by including a A after the pointer
variable. Examples of the use of pointer types can be studied in Appendix 4.

There are some restrictions on the use of pointers within HiSoft Pascal. These
are as follows:

Pointers to types that have not been declared are not allowed. This does not
prevent the construction of linked list structures since type definitions may
contain pointers to themselves e.g.

TYPE item = RECORD
value : INTEGER;
next : “item
END;
link = “*item;

Pointers to pointers are not allowed.

HiSoft ZX Pascal User Manual ~ Page 15

Pointers to the same type are regarded as equivalent e.g.

VAR
first : link;
current : “item;

The variables first and cument are equivalent (i.e. structural equivalence is used)
and may be assigned to each other or compared.

The predefined constant NIL is supported and when this is assigned to a
pointer variable then the pointer variable is deemed to contain no address.

1.7.3 RECORDs

The implementation of RECORDs, structured variables composed of a fixed
number of constituents called fields, within HiSoft Pascal is as Standard Pascal
except that the varlant part of the fleld list is not supported.

Two record types are only treated as equivalent if their declaration stéms from
the same occurrence of the reserved word RECORD see Section 1.7.1 above.

The WITH statement may be used to access the different fields within a record
in a more compact form.

RECORD declarations and WITH statements do not open a new scope. This
means that you should not use the same field identifiers in two different
record declarations or use the same name as a variable and a field identifier.

See Appendix 4 for an example of the use of WITH and RECORDs in general.

1.8 FIELD LIST

(i

— identifier >Or-tw- * >

Used in conjunction with RECORDs see Section 1.7.4 above and Appendix 4 for
an example.

Page 16 HiSoft ZX Pascal User Manual

1.9 VARIABLE

field identifier expression 1

—FO—D field identifier -
; 20,

Two kinds of variables are supported within HiSoft Pascal; static and dynamic

variables. Static variables are explicitly declared through VAR and memory is

gliocated for them during the entire execution of the block in which they were
eclared.

Dynamic variables, however, are created dynamically during program
execution by the procedure NEW. They are not declared explicitly and cannot
be referenced by an identifier. They are referenced indirectly by a static
variable of type pointer, which contains the address of the dynamic variable.

See Section 1.7.2 and Section 2 for more details of the use of dynamic variables
and Appendix 4 for an example.

When specifying elements of multi-dimensional arrays the programmer is not
forced to use the same form of index specification in the reference as was
used in the declaration.

e.g. if variable a is declared as ARRAY(1..10) OF ARRAY(1..10) OF INTEGER then
either a(1)(1) or a(1.1) may be used to access element (1,1) of the array.

HiSoft ZX Pascal User Manual Page 17

1.10 FACTOR

variable -

tunc tion identifier @— exprassion
——»@—r expression 4’@ e
NOT factor —3=

e O }* J.@

O~

See EXPRESSION in Section 1.13 and FUNCTIONSs in Section 3 for more details.

‘ 1.11 TERM

il

factor

90990

The lowerbound of a set is always zero and the set size is always the maximum
of the base type of the set. Thus a SET OF CHAR always occupies 32 bytes (a

possible 256 elements -

one bit for each element). Similarly a SET OF 0..10 is

equivalent to SET OF 0..255.

Page 18

HiSoft ZX Pascal User Manual

1.12 SIMPLE EXPRESSION

term

o .
o 990

The same comments made in Section 1.11 concerning sets apply to simple
expressions.

1.13 EXPRESSION
—>-pimple expression)

PP

When using IN, the set attributes are the full range of the type of the simple
expression with the exception of integer arguments for which the attributes
are taken as if (0..255) had been encountered.

The above syntax applies when comparing strings of the same length, pointers
and all scalar types. Sets may be compared using >=, <=, <> or =. Pointers may
only be compared using = and <>.

HiSoft ZX Pascal User Manyal Page 19

1.14 PARAMETER LIST

A type identifier must be used following the colon - otherwise *ERROR" 44 will
result.

Variable parameters as well as value parameters are fully supported.

Procedures and functions are not valid as parameters.

1.15 STATEMENT

Refer to the syntax diagram on page 22.
Assignment statements

See Section 1.7 for information on which assignment statements are illegal.

When assigning to subrange variables the value is not checked for being within
the subrange for efficiency reasons.

CASE statements

An entirely null case list is not allowed i.e. CASE OF END; will generate an error
("ERROR* 13).

The ELSE clause, which is an alternative to END, is executed if the selector
(expression overleaf) is not found in one of the case lists (constant).

If the END terminator is used and the selector is not found then control is
passed to the statement following the END.

Page 20 HiSoft ZX Pascal User Manual

FOR statements

The control variable of a FOR statement may only be an unstructured variable,
not a parameter. This is half way between the Jensen/Wirth and draft ISO
standard definitions.

GOTO statements

It is only possible to GOTO a label which is present in the same block as the
GOTO statement and at the same level.

You may not use GOTO to jump out of a FOR statement.

Labels must be declared (using the Reserved Word LABEL) in the block in
which they are used; a label consists of at least one and up to four digits. When
a label is used to mark a statement it must appear at the beginning of the
statement and be followed by a colon.

WITH statements

WITH statements may not be used recursively; use the full specification of a
field identifier when using it as a parameter to a procedure which is called
recursively.

The syntax diagram for Statement is on the next page.

!

HiSoft ZX Pascal User Manual

STATEMENT

——{ signedinteger |—()

proceduras identifier (expression -@ r.

statement END =
ELSE statement —
@ expression statement
REPEAT statement UNTIL expression 1
variable identifier [- axpression
o
axpression Do statement ——

=

Page 22 HiSoft ZX Pascal User Manual

1.16 BLOCK

| - l;ﬁ o
p—
= 0
O o-
_@_4—- identifier - type
- 0)-
identifier type
_ & O- et
o/
FORWARD
b OJ block
identifier parameter list ———and
identifier paramaeter list "O-" type identifier
g L
)
\-—y

HiSoft ZX Pascal User Manual

!

— s

Forward References

As in the Pascal User Manual and Report (Section 11.C.1) procedures and
functions may be referenced before they declared through use of the Reserved

Word FORWARD e.g.

PROCEDURE a(y:t) ; FORWARD; (procedure a declared to be}
PROCEDURE b{x:t): (forward of this statement}

BEGIN

éléi; {procedure a referenced. }
END;

PROCEDURE a; {actual declaration of procedure a.}
BEGIN

b(q);
END;
Note that the Earamet.ers and result type of the procedure a are declared

along with FORWARD and are not repeated in the main declaration of the
procedure. Remember, FORWARD is a Reserved Word.

1.17 PROGRAM

PROGRAM identifier —.-O—.- block

Since Files are not implemented in HiSoft Spectrum Pascal, there are no
formal parameters of the program.

Page 24 HiSoft ZX Pascal User Manual

1.18 Strong TYPEing

Different languages have different ways of ensuring that the user does not use
an element of data in a manner which is inconsistent with its definition.

At one end of the scale there is machine code where no checks whatever are
made on the type of variable being referenced. Next we have a language like
the Byte 'Tiny Pascal' in which character, integer and Boolean data may be
freely mixed without generating errors. Further up the scale comes BASIC
which distinguishes between numbers and strings and, sometimes, between
integers and reals (perhaps using the % sign to denote integers). Then comes
Pascal which goes as far as allowing distinct user-enumerated types. At the top
of the scale (at present) is a language like ADA in which one can define
different, incompatible numeric types.

There are basically two approaches used by Pascal implementations to
strength of typing; structural equivalence or name equivalence. HiSoft Pascal
uses name equivalence for RECORDs and ARRAYs. The consequences of this are
clarified in Section 1.7 et al - let it suffice to give an example here; say two
variables are defined as follows:

VAR A : ARRAY['A'..'C'] OF INTEGER;
BE : ARRAY['A'..'C'] OF INTEGER;

then you might be tempted to think that you could write A:=B; but this would
generate an error (*ERROR® 10) under HiSoft Pascal since two separate TYPE
records have been created by the above definitions. In other words, you have
not taken the decision that A and B should represent the same type of data.
You could do this by:

VAR A,B : ARRAY['A'..'C'] OF INTEGER;

and now you can freely assign A to B and vice versa since only one TYPE record
has been created.

Although on the surface this name equivalence approach may seem a little
complicated, in general it leads to fewer programming errors since it requires
more initial thought from the programmer.

HiSoff ZX Pascal User Manual Page 25

HiSoft ZX Pascal User Manual

Section 2
Predefined I|dentifiers

2.1 Constants

MAXINT The largest integer available i.e. 32767.
TRUE, FALSE The constants of type Boolean.

2.2 Types

INTEGER See Section 1.3.

REAL See Section 1.3.

CHAR The full extended ASCII character set of 256 elements.

BOOLEAN (FALSE.TRUE). This type is used in logical operations including
the results of comparisons.

2.3 Procedures and Functions

2.3.1 Input and Output Procedures
2.3.1.1 WRITE

The procedure WRITE is used to output data to the screen or printer.

When the expression to be written is simply of type character then WRITE (e)
passes the 8 bit value represented by the value of the expression e to the
screen or printer as appropriate.

HiSoft ZX Pascal User Manual Page 27

Note:

CHR(8) (<CTRL>-H) gives a destructive backspace on the screen.
CHR(12) (<CTRL>-L) clears the screen or gives a new page on the printer.
CHR(13) (<CTRL>-M) performs a carriage return and line feed.

CHR(16) (<CTRL>-P) will normally direct output to the printer if the screen
is in use or vice versa.

Generally though:
WRITE(P1,P2,......- Pn) ; is equivalent to:
BEGIN WRITE (P1); WRITE(P2); ; WRITE(Pn) END;

The write parameters P1,P2......Pn can have one of the following forms:
<e> or <e:m> or <e:m:n> or <e:m:H>
where e, m and n are expressions and H is a literal constant.

We have 5 cases to examine:

1] e is of type integer: and either <e> or <e:m> is used.

The value of the integer expression e is converted to a character string with a
trailing space. The length of the string can be increased (with leading spaces)
by the use of m which specifies the total umber of characters to be output. Ifm
is not sufficient for e to be written or m is not present then e is written out in
full, with a trailing space, and m is ignored. Note that, if m is specified to be
the length of @ without the trailing space then no trailing space will be output.

2] e is of type integer and the form <e:m:H> is used.

In this case e is output in hexadecimal. If m=1 or m=2 then the value (e MOD
16Am) is output in a width of exactly m characters. If m=3 or m=4 then the full
value of e is output in hexadecimal in a width of 4 characters. If m>4 then
leading spaces are inserted before the full hexadecimal value of e as necessary.
Leading zeroes will be inserted where applicable. Examples:

WRITE(1025:m:H);
m=1 outputs: 1
m=2 outputs: 01
m=3 outputs: 0401
m=4 outputs: 0401
m=5 outputs: 0401

Page 28 HiSoft ZX Pascal User Manual

3] e is of type real. The forms <e>, <e:m> or <e:m:n> may be used.

The value of @ Is converted to a character string representing a real number.
The format of the representation is determined by n.

If n is not present then the number is output in scientific notation, with a
mantissa and an exponent. If the number is negative then a minus sign is
output prior to the mantissa, otherwise a space is output. The number is
always output to at least one decimal place up to a maximum of 5 decimal
places and the exponent is always signed (either with a plus or minus sign).
This means that the minimum width of the scientific representation is 8
characters; if the field width m is less than 8 then the full width of 12
characters will always be output. If m>=8 then one or more decimal places will
be output up to a maximum of 5 decimal places (m=12). For m>12 leading
spaces are inserted before the number. Examples:

WRITE (-1.23E 10:m);

m=7 gives: -1.23000E+10
m=8 gives: -1.2E+10

m=9 gives: -1.23E+10
m=10 gives: -1.230E+10
m=11 gives: -1.2300E+10
m=12 gives: -1.23000E+10
m=13 gives: -1.23000E+10

If the form <e:m:n> is used then a fixed-point representation of the number e
will be written with n specifying the number of decimal places to be output. No
leading spaces will be output unless the field width m is sufficiently large. If n
is zero then e is output as an integer. If @ is too large to be output in the
specified field width then it is output in scientific format with a field width of
m (see above). Examples:

WRITE (1E2:6:2) gives: 100.00
WRITE (1E2:8:2) gives: 100.00
WRITE(23.455:6:1) gives: 23.5
WRITE (23.455:4:2) glves: 2.34550E+01
WRITE (23.455:4:0) glves: 23

4] e is of type character or type string.

Either <e> or <e:m> may be used and the character or string of characters will
be output in a minimum field width of 1 (for characters) or the length of the
string (for string types). Leading spaces are inserted if m is sufficiently large.

5] e is of type Boolean.

Either <e> or <e:m> may be used and TRUE or FALSE will be output depending
on the Boolean value of @ , using a minimum field width of 4 or 5 respectively.

HiSoft ZX Pascal User Manual Page 29

2.3.1.2 WRITELN

WRITELN outputs a newline. This is equivalent to WRITE (CHR (13)). Note that a
linefeed is included.

WRITELN(P1,P2,........ P3) ; is equivalent to:

BEGIN WRITE(P1,P2,....... P3); WRITELN END;

2.3.1.3 PAGE

The procedure PAGE is equivalent to WRITE (CHR(12)); and causes the video
screen to be cleared or the printer to advance to the top of a new page.

2.3.1.4 READ

The procedure READ is used to access data from the keyboard. It does this
through a buffer held within the runtimes - this buffer is initially empty
(except for an end-of-line marker). We can consider that any accesses to this
buffer take place through a text window over the buffer through which we can
see one character at a time. If this text window is positioned over an end-of-
line marker then before the read operation is terminated a new line of text
will be read into the buffer from the keyboard. While reading in this line
various editing keys will be recognised (e.g. <DELETE>, <CAPS SHIFT>-8 etc.) will
be recognised. Now: :

REED VI V2, : saisiie vn) ; is equivalent to:

BEGIN READ (V1); READ(V2); ; READ(Vn) END;

where V1, V2 etc. may be of type character, string, integer or real.

The statement READ (V) ; has different effects depending on the type of V.

There are 4 cases to consider:

1] Vis of type character.

In this case READ(V) simply reads a character from the input buffer and assigns

it to V. If the text window on the buffer is positioned on a line marker (a

CHR(13) character) then the function EOLN will return the value TRUE and a

new line of text is read in from the keyboard. When a read operation is

E{:bsequeﬁltl}' performed then the text window will be positioned at the start of
e new line,

Page 30 HiSoft ZX Pascal User Manual

Important note: Note that EOLN is TRUE at the start of the program. This
means that if the first READ is of type character then a CHR(13) value will be
returned followed by the reading in of a new line from the keyboard; a
subsequent read of type character will return the first character from this new
line, assuming it is not blank. See also the procedure READLN below.

2] Vis qf type string.

A string of characters may be read using READ and in this case a series of
characters will be read until the number of characters defined by the string
has been read or EOLN = TRUE. If the string is not filled by the read (i.e. if end-
of-line is reached before the whole string has been assigned) then the end of
the string is filled with null (CHR(0)) characters - this enables you to evaluate
the length of the string that was read.

The note concerning in 1] above also applies here.

3] Vis of type integer.

In this case a series of characters which represent an integer as defined in
Section 1.3 is read. All preceding blanks and end-of-line markers are skipped
(this means that integers may be read immediately cf. the note in 1] above).

If the integer read has an absolute value gn;ater than MAXINT (32767) then the
runtime error Number 100 large will be issued and execution terminated.

If the first character read, after spaces and end-of-line characters have been
skipped, is not a digit or a sign (+ or -) then the runtime error Number
expected will be reported and the program aborted.

4] Vis of type real

Here, a series of characters representing a real number according to the
syntax of Section 1.3 will be read.

All leading spaces and end-of-line markers are skipped and, as for integers
above, the first character afterwards must be a digit or a sign. If the number
read is too large or too small (see Section 1.3) then an Overflow error will be
reported, if E is present without a following sign or digit then Exponent
expected error will be generated and if a decimal point is present without a
subsequent digit then a Number expected error will be given.

Reals, like integers, may be read immediately; see 1] and 3] above.

2.3.1.5 READLN

READLN(V1,V2,....... Vn) ; is equivalent to:

BEGIN READ(V1,V2,....... Vn); READLN END;

J

HiSoft ZX Pascal User Manual

READLN by itself simply reads in a new buffer from the keyboard; while typing
in the buffer you may use <CAPS SHIFT>-0 to delete the previous character. Thus
EOLN becomes FALSE after the execution of READLN unless the next line is
blank.

READLN may be used to skip the blank line which is present at the beginning
of the execution of the object code i.e. it has the effect of reading in a new
buffer. This will be useful if you wish to read a component of type character at

the beginning of a program but it is not necessary if you are reading an integer
or a real (since end-of-line markers are skipped) or if you are reading
characters from subsequent lines.

2.3.2 Input Functions
2.3.2.1 EOLN

The function EOLN is a Boolean function which returns the value TRUE if the
next char to be read would be an end-of-line character (CHR(13)). Otherwise
the function returns the value FALSE.

2.3.2.2 INCH

The function INCH causes the keyboard of the computer to be scanned and, if a
key has been pressed, returns the character represented by the key pressed.
If no key has been pressed then CHR(0) is returned. The function therefore
returns a result of type character. Note that you should always disable keyboard
checks when using INCH i.e. always specify compiler option $C-.

2.3.3 Transfer Functions

2.3.3.1 TRUNC(X)

The parameter X must be of type real or integer and the value returned by
TRUNC is the greatest integer less than or equal to X if X is positive or the least
integer greater than or equal to X if X is negative. Examples:

TRUNC(-1.5) returns -1
TRUNC(1.9) returns 1

Page 32 HiSoft ZX Pascal User Manual

2.3.3.2 ROUND(X)

X must be of type real or integer and the function returns the nearest integer
to X (according to standard rounding rules). Examples:

ROUND (-6.5) returns -6
ROUND(11.7) returns 12
ROUND (-6.51) returns -7
ROUND (23.5) returns 24

2.3.3.3 ENTIER(X)

X must be of type real or integer - ENTIER returns the greatest integer less than
or equal to X, for all X. Examples:

ENTIER (-6.5) returns -7
ENTIER(11.7) returns 11

Note: ENTIER is not a Standard Pascal function but is the equivalent of BASIC's
INT. It is useful when writing fast routines for many mathematical applications.

2.3.3.4 ORD(X)

X may be of any scalar type except real. The value returned is an integer
representing the ordinal number of the value of X within the set defining the

type of X.
If X is of type integer then ORD(X) = X ; this should normally be avoided.

Examples:
ORD('a') returns 97
ORD('@") returns 64

2.3.3.5 CHR(X)

X must be of type integer. CHR returns a character value corresponding to the
ASCII value of X. Examples:

CHR (49) returns 1
CHR (91) returns |

HiSoft ZX Pascal User Manual ~ Page 33

2.3.4 Arithmetic Functions

In all the functions within this sub-section the parameter X must be of type
real or integer.

2.3.4.1 ABS(X)

Returns the absolute value of X (e.g. ABS (-4.5) gives 4.5). The result is of the
same type as X.

2.3.4.2 SQR(X)
Returns the value X*X i.e. the square of X. The result is of the same type as X.

2.3.4.3 SQRT(X)

Returns the square root of X - the returned value is always of type real. A Maths
Call Error is generated if the argument X is negative.

2.3.4.4 FRAC(X)

Returns the fractional part of X: FRAC(X) = X - ENTIER(X).

As with ENTIER this function is useful for writing many fast mathematical
routines. Examples:

FRAC(1.5) returns 0.5
FRAC (-12.56) returns 0.44

2.3.4.5 SIN(X)

Returns the sine of X where X is in radians. The result is always of type real.

2.3.4.6 COS(X)

Returns the cosine of X where X is in radians. The result is of type real.

2.3.4.7 TAN(X)

Returns the tangent of X where X is in radians. The result is always of type real.

Page 34 HiSoft ZX Pascal User Manual

-

b

2.3.4.8 ARCTAN(X)

Returns the angle, In radians, whose tangent is equal to the number X. The
result is of type real.

2.3.4.9 EXP(X)

Returns the value e/AX where e = 2.71828. The result is always of type real.
2.3.4.10 LN(X)

Returns the natural logarithm (i.e. to the base e) of X. The result is of type real.
If X <= 0 then a Maths Call Eror will be generated.

2.3.5 Further Predefined Procedures

2.3.5.1 NEW(p)

The procedure NEW(p) allocates space for a dynamic variable. The variable p is
a pointer variable and after NEW(p) has been executed p contains the address
of the newly allocated dynamic variable. The type of the dynamic variable is the
same as the type of the pointer variable p and this can be of any type.

To access the dynamic variable pA is used - see Appendix 4 for an example of
the use of pointers to reference dynamic variables.

To re-allocate space used for dynamic variables use the procedures MARK and
RELEASE (see below).

2.3.5.2 MARK(v1)

This procedure saves the state of the dynamic variable heap to be saved in the
pointer variable v1. The state of the heap may be restored to that when the
procedure MARK was executed by using the procedure RELEASE (see below).

The type of variable to which v1 points is irrelevant, since v1 should only be
used with MARK and RELEASE, never NEW.

For an example program using MARK and RELEASE see Appendix 4.

HiSoft ZX Pascal User Manual

2.3.5.3. RELEASE(V])

This procedure frees space on the heap for use of dynamic variables. The state
of the heap is restored to its state when MARK(v1) was executed - thus
effectively destroying all dynamic variables created since the execution of the
MARK procedure and as such it should be used with great care.

See above and Appendix 4 for more details.

2.3.5.4 INLINE(C1,C2,C3,.........)

This procedure allows Z80 machine code to be inserted within the Pascal
program; the values (C1 MOD 256, C2 MOD 256, C3 MOD 256,) are inserted
in the object program at the current location counter address held by the
compiler. C1, C2, C3 etc. are integer constants of which there can be any
number. Refer to Appendix 4 for an example of the use of INLINE.

2.3.5.5 USER(V)

USER is a procedure with one integer argument V. The procedure causes a call
to be made to the memory address given by V. Since HiSoft Pascal holds
integers in two's complement form (see Appendix 3) then in order to refer to
addresses greater than #7FFF (32767) negative values of V must be used. For
example #CO000 is -16384 and so USER(-16384); would invoke a a call to the
memory address #C000. However, when using a constant to refer to a memory
address, it is more convenient to use hexadecimal.

The routine called should finish with a Z80 RET instruction (#C9) and must
preserve the IX register.

2.3.5.6 HALT

This procedure causes program execution to stop with the message
Halt at PC=XXXX

where XXXX is the hexadecimal memory address of the location where the HALT
was issued. Together with a compilation listing, HALT may be used to
determine which of two or more paths through a program are taken. This will
normally be used during de-bugging.

Page 36 HiSoft ZX Pascal User Manual

— ety —

2.3.5.7 POKE(X,V)

POKE stores the e:;})ressinn V in the computer's memory starting from the
memory address X. X is of type integer and V can be of any type except SET. See
Section 2.3.5.5 above for a discussion of the use of integers to represent
memory addresses. Examples:

POKE (#6000, 'A') places #41 at location #6000.
POKE (-16384,3.6E3) places 00 0B 80 70 (hex) at location #C000.

2.3.5.8 TOUT (NAME,START,SIZE)

TOUT is the procedure which is used to save variables on tape, microdrive or
disk (if your disk system is supported by HiSoft Pascal). The first parameter is
an ARRAY OF CHAR that can have a maximum of 12 characters in it and is the
name of the file to be saved. SIZE bytes of memory are dumped starting at the
address START. Both these parameters are of type INTEGER. E.g. to save the
variable V to tape under the name VAR use:

TOUT ('VAR',ADDR (V) ,SIZE(V));

To save the variables onto flles on a microdrive cartridge or a supported disk
drive, simply precede the filename with a drive number (1 to 8 for

microdrives) and a colon (e.g. 1: TEST).

The use of actual memory addresses gives the user far more flexibility than just
the ability to save arrays. For example if a system has a memory mapped
screen, entire screenfuls may be saved directly. See Appendix 4 for an example
of the use of TOUT.

2.3.5.9 TIN (NAME,START)

This procedure is used to load. from tape, microdrive or disk variables etc.
that have been saved using TOUT. NAME is of type ARRAY OF CHAR and can have
a maximum of 12 characters while START is of type INTEGER. The tape,
microdrive or disk is searched for a file called NAME which is then loaded at
memory address START. The number of bytes to load is taken from the front of
the file (saved by TOUT). E.g. to load the variable saved in the example in
Section 2.3.5.8 above use:

TIN('VAR',ADDR(V));

To load the variables from files on a microdrive cartridge or a supported disk
drive, simply precede the fllename with a drive number (1 to 8 for
microdrives) and a colon (e.g. 1:TEST).

See Appendix 4 for an example of the use of TIN.

HiSoft ZX Pascal User Manual Page 37

= =

2.3.5.10 OUT(P,C)

This procedure is used to directly access the Z80's output ports without using
the procedure INLINE. The value of the integer parameter P is loaded in to the
BC register, the character parameter C is loaded in to the A register and the
assembly instruction OUT (C).A is executed.

E.g. OUT(1,A’) outputs the character A to the Z80 port 1.

2.3.6 Further Predefined Functions

2.3.6.1 RANDOM

This returns a pseudo-random number between 0 and 255 inclusive. Although
this routine is very fast it gives poor results when used repeatedly within loops
that do not contain 1/0 operations.

If you require better results than this function yields then you should write a
routine (either in Pascal or machine code) tailored to the particular
application.

2.3.6.2 SUCC(X)

X may be of any scalar type except real and SUCC(X) returns the successor of X.
Examples:

SUCC('A') returns B
SUCC('5") returns 6

2.3.6.3 PRED(X)

X may be of any scalar type except real; the result of the function is the
predecessor of X. Examples:

PRED('3j") returns i
PRED (TRUE) returns FALSE

2.3.6.4 ODD(X)

X must be of integer. ODD returns a Boolean result which is TRUE if X is
odd and FALSE if X is even.

Page 38 HiSoft ZX Pascal User Manual

2.3.6.6 ADDR(V)

This function takes a variable identifier of any type as a parameter and returns
an integer result which is the memory address of the variable identifier V. For
information on how variables are held, at runtime, within HiSoft Pascal see
Appendix 3. For an example of the use of ADDR see Appendix 4.

2.3.6.7 PEEK(X,T)

The first parameter of this function is of type integer and is used to specify a
memory address (see Section 2.3.5.5). The second argument is a type; this is
the result type of the function.

PEEK is used to retrieve data from the memory of the computer and the result
may be of any type.

In all PEEK and POKE (the opposite of PEEK) operations data is moved in HiSoft
Pascal's own internal representation detailed in Appendix 3. For example: if
the memory from #5000 onwards contains the values: 50 61 73 63 61 &C (in
hexadecimal) then:

WRITE (PEEK (#5000,ARRAY[1..6] OF CHAR)) gives Pascal
WRITE (PEEK (#5000, CHAR)) gives P

WRITE (PEEK (#5000, INTEGER)) gives 24912

WRITE (PEEK (#5000, REAL)) gives 2.46227E+29

see Appendix 3 for more details on the representation of types within HiSoft
Pascal

2.3.6.7 SIZE(V)

The parameter of this function is a variable. The integer result is the amount of
storage taken up by that variable, in bytes.

2.3.6.8 INP(P)

INP is used to access the Z80's ports directly without using the procedure
INLINE. The value of the integer parameter P is loaded into be BC register and
the character result of the function is obtained by executing the assembly
‘language instruction IN A,(C).

HiSoft ZX Pascal User Manual Page 39

HiSoft ZX Pascal User Manual

Section 3
Comments and
Compiler Options

3.1 Comments

A comment within a Pascal program may occur between any two reserved
words, numbers, identifiers or special symbols - see Appendix 2. A comment
starts with a { character or the (* character pair. Unless the next character is
a $ all characters are ignored until the next } character or *) character pair. If
a $ was found then the compiler looks for a series of compiler options (see
below) after which characters are skipped until a } or *) is found. For
example:

i:=i+l; {bump the loop count]
{$1+ turn the listing on from now]

3.2 Compiler Options

Compiler options are included in the program between comment brackets and
are the first option in the list is prefaced by a dollar symbol s.

Example:
(*$C-, A-*) to turn keyboard and array checks OFF.

The following options are available:

HiSoft ZX Pascal User Manual Page 4]

Option L

Controls the listing of the program text and object code address by the
compiler.

If L+ then a full listing is given. If L- then lines are only listed when an error is
detected.

DEFAULT: L+

Option O

Controls whether certain overflow checks are made. Integer multiply and
divide and all real arithmetic operations are always checked for overflow.

If O+ then checks are made on integer addition and subtraction.

If O- then the above checks are not made.

DEFAULT: O+

Option C

Controls whether or not keyboard checks are made during object code
program execution. If C+ then if <CAPS SHIFT> and <SPACE> are pressed
together, execution will pause; hit <EDIT> to return to the editor or BASIC with
a HALT message (see Section 2.3.5.6) or any other key to continue execution.

This check is made at the beginning of all loops, procedures and functions.
Thus you may use this facility to detect which loop etc. is not terminating
correctly during the debugging process. It should certainly be disabled if you
wish the object program to run quickly.

If C- then the above check is not made.
DEFAULT: C+

Page 42 HiSoft ZX Pascal User Manual

Option S

Controls whether or not stack checks are made.

If S+ then, at the beginning of each procedure and function call, a check is
made to see if the stack will probably overflow in this block. If the runtime
stack overflows the dynamic variable heap or the program then the message
Out of RAM at PC=XXXX is displayed and execution aborted. Naturally this is not
foolproof; if a procedure has a large amount of stack usage within itself then
the program may 'crash’. Alternatively, if a function contains very little stack
usage while utilising recursion then it is possible for the function to be halted

unnecessarily.
If - then no stack checks are performed.
DEFAULT: 5+

Option A

Controls whether checks are made to ensure that array indices are within the
bounds specified in the array’s declaration.

If A+ and an array index is too high or too low then the message Index too high
or Index too low will be displayed and the program execution halted.

If A- then no such checks are made.
DEFAULT: A+

Option |

When using 16 bit 2's complement integer arithmetic, overflow occurs when
performing a >, <, >=, or <= operation if the arguments differ by more than
MAXINT (32767). If this occurs then the result of the comparison will be
incorrect. This will not normally present any difficulties; however, should you
wish to compare such numbers, the use of |+ ensures that the results of the
comparison will be correct. The equivalent situation may arise with real
arithmetic in which case an overflow error will be issued if the arguments
differ by more than approximately 3.4E38 ; this cannot be avoided.

If I- then no check for the result of the above comparisons is made.
DEFAULT: |-

HiSoff ZX Pascal User Manual Page 43

Option P

If the P option is used the device to which the compilation listing is sent Is
changed i.e. if the video screen was being used the printer is used and vice
versa. Note that this option is not followed by a + or -

DEFAULT: The video screen is used.

Option F

This option letter must be followed by a space and then up to 12 characters of
filename. If you are using microdrive or disk then the filename must start with
a drive number (1, 2, etc.) followed by a colon.

The presence of this option causes inclusion of Pascal source text from the
specified file from the end of the current line - useful if you wish to build up a
'library' of much-used procedures and functions on tape/microdrive/disk and
then include them in particular programs.

The program should be saved using the built-in editor's W command if cassette
is being used or the P command if microdrive/disk is used. The list option L-
(turn listing off) should be used when including from tape, otherwise the
compiler cannot compile quickly enough in the inter-block gaps.

Example:
{S§F MATRIX include the text from a tape file MATRIX};

When writing very large programs there may not be enough room in the
computer's memory for the source and object code to be present at the same
time. It is however possible to compile such programs by saving them to
tape/microdrive/disk and using the F option - then only a small portion of the
source is in RAM at any one time, leaving much more room for the object
code.

This option may not be nested.

General

The compiler options may be used selectively. Thus debugged sections of code
may be speeded up and compacted turning the relevant checks off whilst
retaining checks on untested pieces of code.

Page 44 HiSoft ZX Pascal User Manual

Section 4
The Integral Editor

4.1 I_ntroduction to the Editor

The editor supplied with the ZX Spectrum version of HiSoft Pascal is a simple,
line-based editor designed for ease of use and the ability to edit programs
quickly and efficiently.

Text is held in memory in a compacted form; the number of leading spaces in
a line is held as one character at the beginning of the line and all HiSoft Pascal
Reserved Words are tokenised into one character. This leads to a typical
reduction in text size of 25%.

Note: throughout this section the DELETE key is referred to mean the key that
deletes the character behind the cursor; this is <CAPS SHIFT> 0 or <DELETE> on
Spectrum keyboards.

The editor is entered automatically when HiSoft Pascal is executed and
displays the message:

Copyright HiSoft 198x
All rights reserved

followed by the editor prompt >.

In response to the prompt you may enter characters that make up a command
line of the following format:

C N1, N2,51,82
followed by <ENTER> where:

C is the command to be executed (see Section 4.2 below).
N1 is a number in the range 1 - 32767 inclusive.
N2 is a number in the range 1 - 32767 inclusive.
S1 is a string of characters with a maximum length of 20.
S2 is a string of characters with a maximum length of 20.

HiSoft ZX Pascal User Manual ~ PagedS

The comma is used to separate the various arguments (although this can be
changed - see the S command) and spaces are ignored, except within the
strings. None of the arguments are mandatory although some of the commands
(e.g. the Delete command) will not proceed without N1 and N2 being specified.

The editor remembers the previous numbers and strings that you entered and
uses these former values, where applicable, if you do not specify a particular
argument within the command line. The values of N1 and N2 are initially set to
10 and the strings are initially empty.

If you enter an illegal command line such as F-1,100,HELLO then the line will be
ignored and the polite message Pardon? displayed - you should then retype
the line correctly e.g. F1,100, HELLO. This error message will also be displayed if
the length of S2 exceeds 20; if the length of S1 is greater than 20 then any
excess characters are ignored.

Commands may be entered in upper or lower case.

While entering a command line, various keys may be used to edit the line e.g.
<DELETE> to delete the last character, <CAPS SHIFT> § to delete to the
beginning of line ete.

The following sub-section details the various commands available within the
editor - note that wherever an argument is enclosed by the symbols < > then
that argument must be present for the command to proceed.

4.2 The Editor Commands

4.2.1 Text Insertion

Text may be inserted into the textfile either by typing a line number, a space
and then the required text or by use of the | command. Note that if you type a
line number followed by <ENTER> (i.e. without any text) then that line will be
deleted from the text if it exists.

Whenever text is being entered then the control functions <CAPS SHIFT> 5
(delete to the beginning of the line), <CAPS SHIFT> 8 (go to the next tab
position), <EDIT> (return to the command loop) and <CAPS SHIFT> 3 (toggle the
printer) may be employed. The <DELETE> key will produce a destructive
backspace (but not beyond the beginning of the text line). Text is entered into
an internal buffer within HiSoft Pascal and if this buffer should become full
then you will be prevented from entering any more text - you must then use
<DELETE> or <CAPS SHIFT> 5 to free space in the buffer.

Page 46 HiSoft ZX Pascal User Manual

Command: | n,m

Use of this command gains entry to the automatic insert mode: you are
prompted with line numbers starting at n and incrementing in steps of m. You
enter the required text after the displayed line number, using the various
control codes if desired and terminating the text line with <ENTER>. To exit
from this mode use <EDIT>.

If you enter a line with a line number that already exists in the text then the
existing line will be deleted and replaced with the new line, after you have
pressed <ENTER>. If the automatic incrementing of the line number produces a
line number greater than 32767 then the Insert mode will exit automatically.

If, when typing in text, you get to the end of a screen line without having
entered 128 characters (the buffer size) then the screen will be scrolled up
and you may continue typing on the next line - an automatic indentation will
be given to the text so that the line numbers are effectively separated from the
text.

4.2.2 Text Listing

Text may be inspected by use of the L command; the number of lines displayed
at any one time during the execution of this command is fixed initially but may
be changed through use of the K command.

Command: L nm

This lists the current text to the display device from line number n to line
number m inclusive. The default value for n is always 1 and the default value for
m is always 32767 i.e. default values are not taken from previously entered
arguments.

To list the entire textfile simply use L <ENTER> without any arguments. Screen
lines are formatted with a left hand margin so that the line number Is clearly
displayed. The number of screen lines listed on the display device may be
controlled through use of the K command - after listing a certain number of
lines the list will pause (if not yet at line number m), hit <EDIT> to return to
the main editor loop or any other key to continue the listing.

Command: K n

Kn sets the number of screen lines to be listed to the display device before the
display is paused as described in List above. The value (0 MOD 256) is computed
and stored. For example use K5 if you wish a subsequent list to produce five
screen lines at a time.

HiSoft ZX Pascal User Manual Poge 47

4.2.3 Text Editing

Once some text has been created there will inevitably be a need to edit some
lines. Various commands are provided to enable lines to be amended, deleted,
moved and renumbered:

Command: D <n,m>

All lines from n to m inclusive are deleted from the textfile. If m<n or less than
two arguments are specified then no action will be taken: this is to help
prevent careless mistakes. A single line may be deleted by making m=n ; this
can also be accomplished by simply typing the line number followed by
<ENTER>.

Command: M n,m

This causes the text at line n to be entered at line m deleting any text that
already exists there. Note that line n is left alone. So this command allows you
to Move a line of text to another position within the textfile. If line number n
does not exist then no action is taken.

Command: N <n,m>

Use of the N command causes the textfile to be renumbered with a first line
number of n and in line number steps of m. Both n and m must be present and
if the renumbering would cause any line number to exceed 32767 then the
original numbering is retained.

Command: F n,m,f,s

The text existing within the line range n < x <m is searched for an occurrence
of the string f - the find string. If such an occurrence is found then the
relevant text line is displayed and the Edit mode is entered - see below. You
may then use commands within the Edit mode to search for subsequent
occurrences of the string f within the defined line range or to substitute the
string s (the substitute string) for the current occurrence of f and then search
for the next occurrence of f; see below for more details.

Note that the line range and the two strings may have been set up previously
by any other command so that it may only be necessary to enter F <ENTER> to
initiate the search - see the example in Section 4.3 for clarification.

Page 48 HiSoff ZX Pascal User Manual

Command: E n

Edit the line with line number n. If n does not exist then no action is taken;
otherwise the line is copied into a buffer and displayed on the screen (with
the line number), the line number is displayed again underneath the line and
the Edit mode is entered. All subsequent editing takes place within the buffer
and not in the text itself; thus the original line can be recovered at any time.

In this mode a pointer is imagined moving through the line (starting at the
first character) and various sub-commands are supported which allow you to
edit the line. The sub-commands are:

<SPACE>

<DELETE>

<CAPS SHIFT> 8

<ENTER>
Q

increment the text pointer by one i.e. point to the next
character in the line. You cannot step beyond the end of the
line.

decrement the text pointer by one to point at the previous
character in the line. You cannot step backwards beyond the
first character in the line.

step the text pointer forwards to the next tab position but not
beyond the end of the line.

end the edit of this line keeping all the changes made.

quit the edit of this line i.e. leave the edit ignoring all the
changes made and leaving the line as it was before the edit
was initiated.

reload the edit buffer from the text i.e. forget all changes
made on this line and restore the line as it was originally.

list the rest of the line being edited i.e. the remainder of the
line beyond the current pointer position. You remain in the
Edit mode with the pointer re-positioned at the start of the
line.

kill (delete) the character at the current pointer position.

delete all the characters from (and including) the current
pointer position to the end of the line.

HiSoff ZX Pascal User Manual Page 49

F find the next occurrence of the find string previously defined
within a command line (see the F command above). This sub-
command will automatically exit the edit on the current line
(keeping the changes) if it does not find another occurrence
of the find string in the current line. If an occurrence of the
find string is detected in a subsequent line (within the
previously specified line range) then the Edit mode will be
entered for the line in which the string is found. Note that the
text pointer is always positioned at the start of the found
string after a successful search.

S substitute the previously defined substitute string for the
currently found occurrence of the find string and then
perform the sub-command F i.e. search for the next
occurrence of the find string. This, together with the above F
sub-command, is used to step through the textfile optionally
replacing occurrences of the find string with the substitute
string - see Section 4.3 for an example.

I insert characters at the current pointer position. You will
remain in this sub-mode until you press <ENTER> - this will
return you to the main Edit mode with the pointer positioned
after the last character that you inserted. Using <DELETE>
within this sub-mode will cause the character to the left of the

inter to be deleted from the buffer while the use of <CAPS
HIFT> 8 will advance the pointer to the next tab position,
inserting spaces.

X this advances the pointer to the end of the line and
automatically enters the insert sub-mode detailed above.

C change sub-mode. This allows you to overwrite the character
at the current pointer position and then advances the pointer
b% one. You remain in the change sub-mode until you press
<ENTER> whence you are taken back to the Edit mode with the
pointer positioned after the last character you changed.
<DELETE> within this sub-mode simply decrements the
p?l_lnter by one i.e. moves it left while <CAPS SHIFT> 8 has no
effect.

4.2.4 Tape/Microdrive/Disk Commands

Text may be saved to or loaded from tape or microdrive or disk using the
commands P, W and G:

Page 50 HiSoft ZX Pascal User Manual

Command: P n,m,s

The line range defined by n < x < m is saved to tape in HiSoft Pascal format
under the filename specified by the string s. Remember that these arguments
may have been set by a previous command.

If the first two characters of the filename are a number followed by a colon
then the text is saved to the relevant microdrive or disk drive instead of to
tape. Examples:

P10,90.TEST <ENTER> ’?g;'l‘? lines 10 through 90 to tape under the name
P10,1000,1:PRIMES <ENTER> save lines 10 through 1000 to microdrive/disk
under the name PRIMES

When saving to microdrive or disk, any file with the same name as the file you
are saving will be deleted first.

Before entering this command make sure that your tape recorder is switched
on and in RECORD mode.or that there is a disk or microdrive cartridge in the
given drive.

Command: Wn,m,s

This command behaves like the P command except that it saves your program
to tape in a blocked format so that it can be included using the compiler
option F at a later stage. Use this command if you want the text to be included
from tape. Use the P command if you want your text to be included from
microdrive or disk.

Command: G,,s

The tape/microdrive/disk is searched for a file with a filename of s, which, if
found, will be loaded into the editor so that it can be changed/compiled.

Cassette tape:

While the search is taking place the message Searching.. will be displayed. Ifa
valld HiSoft Pascal tape file is found but has the wrong filename then the
message Found followed by the filename that was found on the tape is
displayed and the search continued. Once the correct filename is found then
Using will appear and the file will be loaded into memory. If an error is
detected during the load then an error message is displayed and the load
aborted. If this happens you must rewind the tape, press PLAY and type G

again.

If the string s is empty then the first HiSoft Pascal file on the tape will be
loaded, regardless of its filename.

HiSoff ZX Pascal User Manual “Page 5T

While searching of the tape is going on you may abort the load by holding
<EDIT> down; this will interrupt the load and return to the main editor loop.

Microdrive/Disk:

If the specified file cannot be found, it is treated as error and the message
Absent is displayed. Use the X command to check that the required file is on
the microdrive/disk.

Note that if any textfile is already present then the textfile that is loaded will
be appended to the existing file and the whole file will be renumbered starting
with line 1 in steps of 1.

4.2.5 Compiling and Running from the Editor

Command: C n

This causes the text starting at line number n to be compiled. If you do not
specify a line number then the text will be compiled from the first existing
line. For further detalls see Section 0.8.

Command: R

The previously compiled object code will be executed, but only if the source
has not been expanded in the meantime - see Section 0.8 for more detalil.

Command: T n,,s

This is the Translate command. The current source is compiled from line n (or
from the start if n is omitted) and, if the compilation is successful, you will be
prompted with Ok?: if you answer Y or y to this prompt then the object code
produced by the compilation will be moved to the end of the runtimes
(destroying the compiler) and then the runtimes and the object code will be
dumped out to tape/microdrive/disk with a filename s. As usual, if the first two
characters of the filename are a number followed by a colon, the code will be
saved onto the relevant microdrive cartridge or disk.

You may then, at a later stage, load this code into memory, and execute the
object program. Load it from BASIC by typing:

LOAD "" CODE <ENTER> from cassette or
LOAD *"M":1;"name"™ CODE <ENTER> from microdrive or disk

Page 52 HiSoft ZX Pascal User Manual

Once loaded, you can execute the program by:

RANDOMIZE USR 24709 <ENTER> or the start of the compiler + 9 if you had
loaded the compiler at an address other
than the default one of 24700 when you
saved the code.

Note that the object code is located at and moved to the end of the runtimes
so that, after a Translate you will need to reload the compliler; however this
should present no problems since you are not likely to Translate a program
until it is fully working.

If you decide not to continue with the save then simply type any character
other than Y or y to the Ok? prompt: control is returned to the editor which
will still function perfectly since the object code was not moved.

4.2.6 Other Commands

Command: B

This simply returns control to Spectrum BASIC. To re-enter the compiler
type:

RANDOMIZE USR 24700 <ENTER> for a cold start or
RANDOMIZE USR 24703 <ENTER> for a warm start, preserving any text

These addresses assume that you loaded Pascal at 24700; if not, use addresses
based on the address at which you loaded the package.

Command: O n,m

Remember that text is held in memory in a tokenised form with leading
spaces shortened into a one character count and all HiSoft Pascal Reserved
Words reduced to a one character token. However if you have somehow got
some text in memory, perhaps from another editor, which is not tokenised
then you can use the O command to tokenise it for you. Text is read into a
buffer in an expanded form and then put back into the file in a tokenised form;
this may of course take a little time to perform. A line range must be specified,
or the previously entered values will be assumed.

HiSoft ZX Pascal User Manual Page 53

e ———

Command: S,,d

This command allows you to change the delimiter which is taken as separaling
the arguments in the command line. On entry to the editor the comma is
taken as the delimiter; this may be changed by the use of the § command to
the first character of the specified string d. Remember that once you have
defined a new delimiter it must be used (even within the S command) until

another one is specified.

Note that the separator may not be a space. Also, please do not confuse this
command with the S sub-command which is used only in the Edit mode (after
using the E command).

Command: V

The V command takes no arguments and displays the current default values of
the line range, the two strings (find and substitute) and the current delimiter.
The line range is shown first followed by the two strings, which may be empty.
and lastly the delimiter. Remember that certain editor command (e.g. D and
{\I] do not use these defaults but must have values specified on the command
ine.

Command: Xn

Gives a catalogue of the microdrive or disk drive n e.g.
x2 <ENTER> catalogues drive 2

If a parameter is not given then drive 1 is assumed.

Do not use this command without a microdrive or disk drive connected.

Page 54 HiSoft ZX Pascal User Manual

4.3 An Example of the use of the

Editor

Let us assume that you have typed in the following program (using 110,10):

10 PROGRAM BUBBLESORT

20 CONST

30 Size = 2000;

40 VAR

50 Numbers : ARRAY [l1..Size] OF INTEGER;
60 I, Temp : INTEGER;

70 BEGIN

80 FOR I:=1 TO Size DO Number[I] := RANDOM;
90 REPEAT

100 FOR I:=1 TO Size DO

110 Noswaps := TRUE;

120 IF Number[I] > Number[I+1l] THEN

130 BEGIN

140 Temp := Number[I]:;

150 Number[I] := Number[I+1l];

160 Number[I+1l] := Temp;

170 Noswaps := FALSE

180 END

190 UNTIL Noswapss;

200 FOR I:=1 TO Size DO WRITE (Number([I]:4);
210 END.

This program has a number of errors which are as follows:

Line 10 Missing semi-colon.

Line 30 Not really an error but say we want a size of 100.
Line 100 Size should be Size-1.

Line 110 This should be at line 95 instead.

Line 190 Noswapss should be Noswaps.

Also the variable Numbers has been declared but all references are to Number.

Finally the BOOLEAN variable Noswaps has not been declared.

HiSoft ZX Pascal User Manual

Page 55

To put all this right we can proceed as follows:

Fﬁﬂ, 200 r Number, Numbers <ENTER>
and then use the sub-command S repeatedly.

E10 <ENTER> then the sequence X ; <ENTER> <ENTER>
E30 <ENTER> then (9 spaces) K C 1 <ENTER> <ENTER>

F100,100,Size,Size-1 <ENTER>
followed by the sub-command S.

'M110,95 <ENTER>

E190 <ENTER> then X <DELETE> <ENTER> <ENTER>
65 Noswaps : BOOLBAN; <ENTER>

N10,10 <ENTER> to renumber in steps of 10.

You are strongly recommended to work through the above example actually
using the editor.

Page 56 HiSoft ZX Pascal User Manual

Appendix 1
Errors

A.1.1 Error numbers generated

by the Compiler

5000 G G 3 =

COCOCOCOCOD DB B BRI DD B0 B B B = = b b b = e e e
FEEEECRNGORON -0 aRGR O

35.
36.
37.

Number too large.

Semi-colon or 'END' expected.
Undeclared identifier.

Identifier expected.

Use '=' not :=' in a constant declaration.
'=" expected.

This identifier cannot begin a statement.
:=' expected.

')’ expected.

Wrong type.

"' expected.

Factor expected.

Constant expected.

This identifier is not a constant.

'THEN' expected.

'DO' expected.

‘'TO' or 'DOWNTO' expected.

‘(' expected.

Cannot write this type of expression.
'OF' expected.

"' expected.

"' expected.

'PROGRAM' expected.

Variable expected since parameter is a variable parameter.
'BEGIN' expected.

Variable expected in call to READ.
Cannot compare expressions of this type.
Should be either type INTEGER or type REAL.
Cannot read this type of variable.

This identifier is not a type.

Exponent expected in real number.
Scalar expression (not numeric) expected.
Null strings not allowed (use CHR(O)).

'' expected.

'I' expected.

Array index type must be scalar.

".." expected.

HiSoft ZX Pascal User Manual

<

l" or ', expected in ARRAY declaration.

Lowerbound greater than upperbound.

Set too large (more than 256 possible elements).

Function result must be type identifier.

"' or ']' expected in set.

..'or ', or ']' expected in set.

Type of parameter must be a type identifier.

Null set cannot be the first factor in a non-assignment statement.
Scalar (including real) expected.

Scalar (not including real) expected.

Sets incompatible.

'<' and '>' cannot be used to compare sets.

'FORWARD', 'LABEL', 'CONST', 'VAR', 'TYPE' or 'BEGIN' expected.
Hexadecimal digit expected.

Cannot POKE sets.

Array too large (> 64K).

'END’ or ') expected in RECORD definition.

Field identifier expected.

Variable expected after "WITH'.

Variable in WITH must be of RECORD type.

Field identifier has not had associated WITH statement.

Unsigned integer expected after 'LABEL'.

Unsigned integer expected after 'GOTO'.

This label is at the wrong level.

Undeclared label.

The parameter of SIZE should be a variable.

Can only use equality tests for pointers.

The only write parameter for integers with two ":'s is exm:H.
Strings may not contain end of line characters.

The parameter of NEW, MARK or RELEASE should be a variable of

pointer type.
The parameter of ADDR should be a variable.

Page 58 HiSoft ZX Pascal User Manual

A.1.2 Runtime Error Messages

When a runtime error is detected then one of the following messages will be
displayed, followed by at PC=XXXX where XXXX is the memory location at
which the error occurred. Often the source of the error will be obvious; if not,
consult the compilation listing to see where in the program the error
occurred, using XXXX to cross reference. Occasionally this does not give the
correct result.

Halt

Overflow

Out of RAM

/ by zero also generated by DIV,
Index too low

Index too high

Maths Call Error

Number too large

Number expected

Line too long

Exponent expected

o OONOO RN

b—np'

Runtime errors result in the program execution being halted.

HiSoft ZX Pascal User Manual Page 59

T

Appendix 2
Reserved Words and
Predefined Ildentifiers

A 2.1 Reserved Words

AND ARRAY BEGIN CASE CONST DIV

DO DOWNTO ELSE END FORWARD FUNCTION
GOTO IF IN LABEL MOD NIL

NOT OF OR PACKED PROCEDURE PROGRAM
RECORD REPEAT SET THEN TO TYPE
UNTIL VAR WHILE WITH

A 2.2 Special Symbols

The following symbols are used by HiSoft Pascal and have a reserved meaning:

- * }'f

<> < <= >= >
) []

} (™)

"=

E S | B

Page 60 HiSoft ZX Pascal User Manual

A 2.3 Predefined Identifiers

The following entities may be thought of a declared in a block surrounding the
whole program and they are therefore available throughout the program unless
re-defined by the programmer within an inner block.

For further information see Section 2.
CONST MAXINT = 32767;

TYPE BOOLEAN = (FALSE, TRUE);
CHAR (The expanded ASCII character set};
INTEGER = -MAXINT..MAXINT;

REAL {A subset of the real numbers. See Section 1.3.}
PROCEDURE WRITE; WRITELN; READ; READLN; PAGE; HALT;
USER; POKE; INLINE; 0OUT; NEW; MARK;
RELEASE; TIN; TOUT;
FUNCTIN ABS; SOR; oDD; RANDOM; ORD; succe;
PRED; INCH; EOLN; . FPEEK; CHR; SQRT;
ENTIER; ROUND; TRUNC; FRAC; SIN; cOos;
TAN; ARCTAN; EXP; - LN; ADDR; SIZE; INP;

HiSoft ZX Pascal User Manual Page 61

Appendix 3
Data Representation
and Storage

A 3.1 Data Representation

The following discussion details how data is represented internally by HiSoft
Pascal

The information on the amount of storage required in each case should be of
use to most programmers (the SIZE function may be used see Section 2.3.6.7);

other details may be needed by those attempting to merge Pascal and machine
code programs.

A 3.1.1 Integers

Integers occupy 2 bytes of storage each, in 2's complement form. Examples:

1 = #0001
256 = #0100
=256 = $EF00

The standard Z80 register used by the compiler to hold integers is HL.

A 3.1.2 Characters, Booleans and other Scalars

These occupy 1 byte of storage each, in pure, unsigned binary.
Characters:

8 bit, extended ASCII is used.

‘B! = #45
e = #5B

g

e 62 HiSoft ZX Pascal User Manual

Booleans:

ORD (TRUE) = 1 so TRUE is represented by 1.
ORD (FALSE) = 0 so FALSE is represented by O.

The standard Z80 register used by the compiler for the above is A.

A 3.1.3 Reals

The (mantissa, exponent) form is used similar to that used in standard
scientific notation - only using binary instead of denary. Examples:

2 = 2+10° or 1.0, *2'

1 = 1*10 or 1.0,* 2°

-12.5 = -1.25*10" or -25%*27"
-11001,%*27"
-1.1001, *2° when normalised.

0.1 = 1.0%#10° or 1/10 = 1/1010, = 0.1,/101,

so now we need to do some binary long division ...

0.0001100

101| 0.100000000000000
101
110
101

1000
101

at this point we see that the fraction recurs ...

= 0.1,/101, = 0.0001100,
” 1.1001100*2* answer

So how do we use the above results to represent these numbers in the
computer? Well, firstly we reserve 4 bytes of storage for each real in the format
shown on the next page:

HiSoft ZX Pascal User Manual Page 63

sign normalised mantissa exponent data

2 2 | 0 4 0] bit
T T
HL ED register
sign: the sign of the mantissa; 1 = negative, O = positive.

normalised mantissa: the mantissa normalised to the form |.xxxxxx with the
top bit (bit 22) always 1 except when representing
zero (HL=0, DE=0).

exponent: the exponent in binary 2's complement form.

Thus:

2 = 0 1000000 00000000 00000000 OO0OODO01 (#40,#00,#00, #01)
1 = 0 1000000 00000000 00000000 00000000 (#40,#00,#00, #00)
-12.5 = 1 1100100 00000000 00000000 00000011 (#E4,#00,#00,#03)
0.1 = 0 1100110 01100110 01100110 11111100 (#66,#66,#66, #FC)

So, remembering that HL and DE are used to hold real numbers, then we
would have to load the registers in the following way to represent each of the

above numbers:
2 = LD HL, #4000 LD DE, #0100
1 = LD HL, #4000 LD DE, #0000
=12.5 = LD HL, #E400 LD DE, #0300
0.1 = LD HL, #6666 LD DE, #FC66

The last example shows why calculations involving binary fractions can be
inaccurate; 0.1 cannot be accurately represented as a binary fraction, to a finite
number of decimal places.

N.B. Reals are stored in memory in the order ED LH.

A 3.1.4 Records and Arrays

Records use the same amount of storage as the total of their components.

Arrays: if n=number of elements in the array and s=size of each element then
the number of bytes occupied by the array is n°s.

Page 64 HiSoft ZX Pascal User Manual

For example:

an ARRAY(1..10) OF INTEGER requires 10°2 = 20 bytes
an ARRAY(2..12,1..10) OF CHAR has 11°10=110 elements and so requires 110 bytes.

A 3.1.5 Sets

Sets are stored as bit strings and so if the base type has n elements then the
number of bytes used is: (n-1) DIV 8 + 1. Examples:

a SET OF CHAR requires (256-1) DIV 8 + 1 = 32 bytes.
a SET OF (blue, green, yellow) requires (3-1) DIV 8 + 1 = 1 byte.

A 3.1.6 Pointers

Pointers occupy 2 bytes which contain the address (in Intel format i.e. low
byte first) of the variable to which they point.

A 3.2 Variable Storage at Runtime

There are 3 cases where you might need information on how variables are
stored at runtime:

Global variables declared in the main program block.

Local variables declared in an inner block.

Parameters and passed to and from procedures and functions.
Returned Values

These individual cases are discussed below and an example of how to use this
information may be found in Appendix 4.

Global variables

Global variables are allocated from the top of the runtime stack downwards e.g.
if the runtime stack is at #8000 and the main program variables are:

VAR i : INTEGER;
ch : CHAR;
¥ : REAL;

i (which occupies 2 bytes - see the previous section) will be stored at

locations #B000-2 and #B000-1 i.e. at # AFFE and #AFFF.
ch (1 byte) will be stored at location #AFFE-1 i.e. at #AFFD.
X (4 bytes) will be placed at #AFF9, #AFFA, #AFFB and #AFFC.

HiSoft ZX Pascal User Manual Page 65

Local variables

Local variables cannot be accessed via the stack very easily so, instead, the IX
register is set up at the beginning of each inner block so that (IX-4) points to
the start of the block's local variables e.g.

PROCEDURE test;
VAR i,j : INTEGER;

then:

i (integer, so 2 bytes) will be placed at IX-4-2 and IX-4-1 {.e. IX-6 and IX-5.
j will be placed at IX-8 and IX-7.

Parameters and returned values

Value parameters are treated like local variables and, like these variables, the
earlier a parameter is declared the higher address it has in memory. However,
unlike variables, the lowest (not the highest) address is fixed and this is fixed
at (IX+2) e.g.

PROCEDURE test(i : REAL; j : INTEGER);
then:

J (allocated first) is at IX+2 and IX+3.
i is at IX+4, IX+5, IX+6, and IX+7/.

Variable parameters are treated just like value parameters except that they are
always allocated 2 bytes and these 2 bytes contain the address of the variable

e.g.
PROCEDURE test (i : INTEGER; VAR x : REAL);
then:

the reference to x is placed at IX+2 and IX+3: these locations contain the
address where x is stored. The value of i is at IX+4 and [X+5.

Returned values of functions are placed above the first parameter in memory
e.g.

FUNCTION test(i : INTEGER) : REAL;

then iis at IX+2 and IX+3 and space is reserved for the returned value at IX+4,
IX+5, X+6 and IX+7.

Page 66 HiSoft ZX Pascal User Manual

Appendix 4

Some Example HiSoft

Pascal Programs

The following programs should be studied carefully if you are in any doubt as to

how to program in HiSoft Pascal.

{Program to illustrate the use of TIN and TOUT.The program constructs a very
simple telephone directory on tape and then reads it back. You should write any

searching required.}
PROGRAM TAFPE;

CONST
Max=10;

TYPE
Entry = RECORD
Name : ARRAY [1..10] OF CHAR;
Number : ARRAY [1..10] OF CHAR
END;

VAR
Directory : ARRAY [l..Max] OF Entry;
I : INTEGER;

BEGIN
{Set up the directory..]
FOR I:= 1 TO Max DO
BEGIN
WITH Directory(I] DO
BEGIN
WRITE ('Name please'):;
READLN;
READ (Name) ;
WRITELN;
WRITE ('Number please');
READLN;
READ (Number) ;
WRITELN
END
END;

{To dump the directory to tape use..)

TOUT ('Director',ADDR (Directory),SIZE (Directory)):
[(Now to read the array back do the following..]

TIN('Director', ADDR(Directory))

{And now you can process the directory as you wish....

END.

HiSoft X Pascal User Manual

Page 67

{Program to show the use of recursion]
PROGRAM FACTOR;

(This program calculates the factorial of a number input from the
keyboard 1) using recursion & 2) using an iterative method.)

TYPE

POSINT = 0, .MAXINT;100
VAR

METHOD CHAR;

NUMBER ; POSINT;
{Recursive algorithm. }
FUNCTION RFAC(N : POSINT) : INTEGER;
VAR F : POSINT;

BEGIN
IF N>1 THEN F:= N * RFAC (N-1) [RFAC invoked N times)
ELSE F:= 1;
RFAC := F
END;

(Iterative solution]
FUNCTION IFAC(N : POSINT) : INTEGER;

VAR I,F: POSINT;

BEGIN
F = 1;
FOR I := 2 TO NDO F := F*I; {Simple Loop]
IFAC:=F

END;

BEGIN
REFPEAT
WRITE ('Give method (I or R) and number)2
READLN ;
READ (METHOD , NUMBER) ;
IF METHOD = 'R"
THEN WRITELN (NUMBER,'! = ' RFAC (NUMBER))
ELSE WRITELN (NUMBER,'! = ', IFAC (NUMBER)) ;
UNTIL NUMBER=0
END.

Page 68 HiSoft 2X Pascal User Manual

[Program to list lines of a file in reverse order.
Shows use of pointers, records, MARK and RELEASE. |

PROGRAM ReverseLine;

TYPE elem=RECORD {Create linked-list structure]
next: “elem;
ch: CHAR
END;
link="elem;
VAR prev,cur, heap: link; {all pointers to 'elem')
BEGIN
REPEAT {do this many times)
MARK (heap) ; {assign top of heap to 'heap'.]
prev:=NIL; {points to no varaible yet.]
WHILE NOT EOLN DO
BEGIN
NEW (cur) ; {create a new dynamic record]
READ (cur”.ch) ; {and assign its field to one
character from file. |}
cur”.next :=prev; {this field's pointer adresses]
prev:=cur {previous record.)
END;

{Write out the line backwards by sacanning the records
set up backwards.]

cur:=prev;

WHILE cur <> NIL DO [NIL is first]
BEGIN
WRITE (cur*.ch); {WRITE this field i.e. character}
cur:=cur”.next {Address previous field.}
END;
WRITELN;
RELEASE (heap) ; {Release dynamic wvariable space.}
READLN; {Wait for another line}
UNTIL FALSE {Use CC to exit)
END.

HiSoft ZX Pascal User Manual ~ Poge &9

(Program to show how to 'get your hands dirty'!
i.e. how to modify Pascal variables using machine code.
Demonstrates PEEK, POKE, ADDR and INLINE.]

PROGRAM divmult2;
VAR r:REAL;
FUNCTION divbyZ2 (x:REAL) :REAL;

VAR i:INTEGER;
BEGIN

i:=ADDR (x)+1;

POKE (i, PRED (PEEK (i,CHAR))) ;

divby2:=x
END;

FUNCTION multby2 (x:REAL) : REAL;

BEGIN
INLINE (#DD, #34,3) ;

multby?2:=x
END;

BEGIN

REPEAT
WRITE('Enter the number r ');
READ (r) ;

{Function to divide by 2 ..
. quickly]

{Point to the exponent of x|
{Decrement the exponent of x.
see Appendix 3.1.3.])

{Function to multiply by 2..
. quickly)

{INC (IX+3) - the exponent of x
- see Appendix 3.2.}

{Nc need for READLN - see
Section 2.3.1.4}

WRITELN('r divided by two is',divby2(r):7:2);
WRITELN('r multiplied by two is',multby2(r):7:2);

UNTIL r=0
END.

Please note that the above programs are included to show you how to solve
particular problems in HiSoft Pascal; they are not meant to be examples of the
Pascal language in general. You should consult one of the books in the
Bibliography if you are learning Pascal. Remember, there is no substitution for
understanding the program, don't just type it in blindly, with no thought.

HiSoft ZX Pascal User Manual

Appendix 5
Turtle Graphics and
Specirum Sound &

Graphics

It is very easy to use the sound and graphic facilities of the Spectrum with
HiSoft Pascal through the use of USER and INLINE. In this Appendix, we first
detail the supplied Turtle Graphics package and then show you how to
interface with the Spectrum ROM so that you can do it yourself if you want to.

A 5.1 Turtle Graphics

HiSoft Pascal comes complete with a Logo-style Turtle Graphics package. This
is supplied as a Pascal source program under the name TURTLE. It is to be found
on your master HiSoft Pascal disk or on the B side of your master cassette.

The package is written in Pascal and can be loaded from within the Pascal
editor by using the G command:

G, , TURTLE <ENTER> from cassette or
G, ,1:TURTLE from disk drive 1

This will load the turtle graphics program and append it to any existing Pascal
program. Note that, in order for it to function correctly, the Turtle Graphics
program must be preceded by a normal PROGRAM heading and a VAR
declaration; TYPE, CONST and LABEL declarations are optional. There must be
no Procedures or Functions declared before the inclusion of the Turtle

Graphics package.

As in the majority of Turtle Graphics implementations, HiSoft Pascal's TURTLE
creates an imaginary creature on the screen which the user can move around
via some very simple commands. This 'turtle’ can be made to leave a trail (in
varying colours) or can be made invisible. The turtle's heading and position are
held in global variables which are updated when the creature is moved or
turned; obviously these variables may be inspected or changed at any time.

The facilities available are as follows:

=

HISoff ZX Pascal User Manuai Page

Global Variables
HEADING

This is used to hold the angular value of the direction in which the turtle is
currently facing. It takes any REAL value, in degrees, and may be initialised to 0
with the procedure TURTLE (see below). The value O corresponds to an
EASTerly direction so that after a call to the procedure TURTLE the turtle is
facing left to right. As the heading increases from zero then the turtle turns in
an anti-clockwise direction.

XCOR, YCOR

These are the current (x,y) REAL co-ordinates of the turtle on the screen. The
Spectrum graphics screen has a logical size of 256x176 pixels and the turtle
may be positioned on any point within this area; if an attempt is made to move
the turtle out of this pool (using LINE, see below) then the message Out of Limits
will be displayed and the program will be aborted with a HALT message.

Initially XCOR and YCOR are undefined; use of the procedure TURTLE initialises
them to 127 and 87 respectively, thus placing the turtle near the middle of

his pool.

PENSTATUS

An integer variable holding the current status of the pen (i.e. the trail left by
the turtle). 0 means the pen is down, 1 means the pen is up.

Procedures

The procedures PLOT, LINE and SPOUT included as standard in TURTLE are
described later, The only essential difference in their implementation here is
that LINE calls the CHECK procedure which ensures that XCOR and YCOR
cannot go outside the screen boundaries. The other procedures available are:

Page 72 HiSoft ZX Pascal User Manual

INK (C: INTEGER)

This takes an integer between O and 8 inclusive and sets the ink colour of the
turtle's pen accordingly.

PAPER (C:INTEGER)

Sets the background (paper) colour of the screen to the colour associated with
the ink C which is an integer in the range O to 8 inclusive.

COPY

Downloads the current screen to the ZX Printer; useful for getting a copy of a
completed graphics page.

PENDOWN (C:INTEGER)

Sets the turtle state so that it will leave a trail in the ink colour associated with
the parameter C. This procedure assigns O to PENSTATUS.

PENUP

Subsequent to a call to this procedure the turtle will not leave a trail. Useful
i;)g muving from one graphic section to another. PENUP assigns the value 1 to
NSTATUS.

SETHD (A:REAL)

Takes a REAL parameter which is assigned to the global variable heading thus
setting the direction in which the turtle is pointing. Remember that a heading
of O corresponds to EAST, 90 to NORTH, 180 to WEST and 270 to SOUTH.

HiSoft ZX Pascal User Manual “Page 73

SETXY (X,Y : REAL)

Sets the absolute position of the turtle within the graphics area to the value
(X.Y). No check is made within this procedure to ascertain if (X.Y) is out of
bounds; procedure LINE does this check.

FWD (L : REAL)

Moves the turtle forward L units in the direction of its current heading. A unit
corresponds to a graphics pixel, rounded up or down where necessary.

BACK (L:REAL)

Moves the turtle L units in the directly opposite direction to that in which it is
currently heading (i.e. -180) - the heading is left unchanged.

TURN (A : REAL)

Changes the turtle's heading by A degrees without moving it. The heading is
increased in the anti-clockwise direction.

VECTOR (A,L : REAL)

Displaces the turtle's position by L units at a heading of A; the turtle's heading
remains A after the displacement.

RIGHT (A : REAL)

Changes the turtle's heading by A degrees without moving it. The heading is
Increased in the clockwise direction.

Page 74 HiSoft ZX Pascal User Manual

LEFT (A : REAL)

Changes the turtle's direction by A degrees anti-clockwise. Identical to TURN.

ARCR (R:REAL; A:INTEGER)

The turtle moves through an arc of a circle whose size is set by R. The length
of the arc is determined by A, the angle turned through (subtended at the
centre of the circle) in a clockwise direction. Typically R may be set to 0.5.

TURTLE

This procedure simply sets the initial state of the turtle; it is placed in the
middle of the screen, facing EAST (heading of 0), on a blue background paper
and leaving a yellow trail. Remember that the state of the turtle is not initially
defined so that this procedure is often used at the beginning of a program.

This concludes the list of facilities available with TURTLE; although simple in
implementation and use you will find that Turtle Graphics are ca ble of
producing very complex designs at high speed. To give you a taste of this we
present some example programs below. Remember that you must edit a copy
of the example program before entering these.

HiSoft ZX Pascal User Manual Page 75

Example Turtle Graphics Programs

In all the example programs given below we assume that you have already
loaded HiSoft Pascal and used G,, TURTLE <ENTER> to load the Turtle Graphics

package into the editor (it starts at line 10 and finishes at line 1350). Now
proceed with the examples:

CIRCLES

1 PROGRAM CIRCLES;
2 VAR I:INTEGER;

139¢ BEGIN

|1400 TURTLE;

1410 FOR I:=1 TO 9 DO
|420 BEGIN

1430 ARCR(0.5,360) ;
(440 RIGHT (40)

1450 END

1460 END.

SPIRALS

1 PROGRAM SPIRALS;
2 VAR

1390 PROCEDURE SPIRALS (L,A:REAL);

1400 BEGIN

14]0 FWD (L) ;

1420 RIGHT (A) ;

1430 SPIRALS(L+1,A)

1440 END;

1450 BEGIN

1460 TURTLE;

1470 SPIRALS (9, 95) for (9,90) or (9,121) ... }
1480 END.

Page 76 HiSoft 2X Pascal User Manual

FLOWER

1
2

| 390 PROCEDURE PETAL (S:REAL);

1490
1410
1420
1430
1440
1450
1460
1470
1480
14490
1500
1510
1510
1530
1540
1550
15690
1570
1530
1590
1600
1610
1620

PROGRAM FLOWER;
VAR

BEGIN
ARCR (5,60);
LEFT (120) ;
ARCR (S, 60) ;
LEFT(120)

END;

PROCEDURE FLOWER (S:REAL);

VAR I:INTEGER;
BEGIN
FOR I:=1 TO & DO
BEGIN
PETAL (S) ;
RIGHT (60)
END
END;
BEGIN TURTLE;

" SETXY (127, 60) ;

LEFT (90); FWD(10);
RIGHT (60) ; PETAL(0.2);
LEFT(60); PETAL(0.2);
SETHD (90) ; FWD(40);
FLOWER(0.4)

END.

For further, extended study of Turtle Graphics we highly recommend the

excellent (if expensive) book Turtle Geometry
di Sessa, published by MIT Press, ISBN 0-262-01063-1.

by Harold Abelson and Andrea

HiSoff ZX Pascal User Manual

Poge77

A 5.2 Sound & Graphics with the ROM

We can easily define Pascal procedures to call the Spectrum ROM in order to
control the sound and graphic capabilities of the Spectrum.

A 5.2.1 Sound

The following two procedures (defined in the order given below) are required
to produce sound with HiSoft Pascal.

{This procedure uses machine code to pick up its parameters and then
passes them to the BEEP routine within the Spectrum ROM]}

PROCEDURE BEEPER (A, B : INTEGER);

BEGIN
INLINE (#DD, #6E, 2, #DD, 466, 3, (LD L, (IX+2) : LD H, (IX+3)}
#D0D, 45E, 4, #DD, #56, 5, (LD E, (IX+4) : LD D, (IX+5)}
#CD, #BS5, 3, #F3) {CALL #3BS5S : DI }
END;

{This procedure traps a frequency of 0 which it converts into a
period of silence. For non-zero frequencies the frequency and length
of the note are converted approximately to the values required by
the Spectrum ROM routine and this is then called via BEEPER}

FPROCEDURE BEEP (FREQUENCY : INTEGER; LENGTH : REAL);
VAR I : INTEGER;
BEGIN

IF FREQUENCY=0 THEN FOR I:=1 TO ENTIER(12000*LENGTH) DO

ELSE

BEEPER (ENTIER (FREQUENCY*LENGTH) , ENTIER (437500/FREQUENCY-30.125));
FOR I:1 TO 100 DO {short delay between notes)
END;

Example of the use of BEEP:

BEEP (262, 0.5);
BEEP (0, 1): {sounds middle C for 0.5 secs then a 1 sec silence}

Page 78 HiSoft ZX Pascal User Manual

A 5.2.2 Graphics

Three graphics procedures are given; the first plots a given (X.Y) co-ordinate
whilst the second and third are used to draw lines from the current plotting
position to a new position which is defined relative to the current plot
position and which then becomes the current plot position.

Both PLOT and LINE take a BOOLEAN variable, ON, which, if TRUE, will cause
any t to be plotted regardless of the state of the pixel in that plot position
or, if FALSE, will cause any pixel already present at the plot position to be
flipped i.e. if on it becomes off and vice versa. This effect is identical to that
caused by Spectrum BASIC's OVER command.

{A procedure that mirrors the BASIC PLOT command. Simply plots the
point X,Y ON or OFF depending on whether the first parameter to the
procedure is TRUE or FALSE}

PROCEDURE PLOT (ON : BOOLEAN; X,Y : INTEGER);
BEGIN
IF ON THEN WRITE(CHR(21), CHR(0))
ELSE WRITE (CHR(21), CHR(1l));

INLINE (#FD, #21, #3A, #5C, { LD IY,#5C3A }
#CD, $ES5, #22); { CALL #22E5 ;ROM PLOT routine |}
END;

{Called by the LINE procedure, LINEl is used to pass the correct
arguments to the ROM's DRAW routine)

PROCEDURE LINE1 (X,Y,SX,SY : INTEGER);

BEGIN
INLINE (#FD, #21, #3a, #5C, { LD IY,#5C3A)
40D, #56, 2, 4DD, #5E, 4, { LD D, (IX+2) : LD E, (IX+4) 1}
#DD, #46, 6, 4#DD, #4E, 8, { LD B, (IX+6) : LD C, (IX+8) }
#CD, #BR, #24) { CALL #24Ba ;ROM DRAW routine)
END;

{LINE draws a line from the current plot position (x,y) to
(x+X,y+Y). The line may be 'on' or 'off' depending on the value of
the BOOLEAN parameter ON.}

HiSoft ZX Pascal User Manudl Page 79

PROCEDURE LINE(ON : BOOLEAN; X,Y : INTEGER);
VAR
SGNX, SGNY : INTEGER;
BEGIN
IF ON THEN WRITE(CHR(21), CHR(0))
ELSE WRITE(CHR(21), CHR(1l}).
IF X<(0 THEN SGNX:=-1 ELSE SGNX:=1; {the DRAW routine that is to}
IF ¥Y<0 THEN SGNY:=-1 ELSE SGNY:=1; (called within LINEl needs}
{the absolute wvalues of X and}
[Y and their signs)
LINEl (ABS (X), ABS(Y), SGNX, SGNY); |(Plot the line)
END;

Example of the use of PLOT and LINE:

PLOT (ON, 50, 50);
LINE (ON, 100, -50); { draws a line from (50,50) to (150,0) }

A 5.2.3 Output Directly through the ROM

There are occasions where it is useful to output characters or control codes
directly through the Spectrum ROM RST #10 routine rather than use Pascal's
WRITE(LN). For example, when using the PRINT AT control code; this code
should be followed by two 8-bit values giving the (X.Y) co-ordinate to which the
print position is to be moved. However, if this is done using the Pascal WRITE
statement, certain values of X and Y will not be passed to the ROM but trapped
by Pascal (e.g. 8 which is interpreted by Pascal as delete last character) thus
causing the PRINT AT command to malfunction. You can overcome this problem
by using the following procedure:

{SPOUT outputs a character directly through the ROM's RST #10
routine, avoiding any trapping by Pascal of the value output)

PROCEDURE SPOUT (C : CHAR);

BEGIN
INLINE (#FD, 421, #3A, #5C, { LD IY,#5C3Aa }
#DD, 47E, 2, { LD A, (IX+2) }
#D7) { RST #10 ;ROM output }
END;

Example of the use of SPOUT:

SPOUT(CHR(22)); SPOUT(CHR(8)); SPOUT(CHR(13));
| sets the print position to line 8, column 13 }

Please feel free to use and modify the above routines in any way you see fit.

Page 80 HiSoff ZX Pascal User Manual

Bibliography

The following are recommended reading; you may find them in your local
library.

Tutorial Style Books

W. Findlay Pascal: An Introduction to Methodical Programming
D.A. Watt' 3rd Edition 1985. Pitman. ISBN 0 273 02188 5

Boris Allan Introducing Pascal.
1st Edition 1984. Granada. ISBN 0 246 12323 0

R. Forsyth Pascal at Work and Play.
st Edition 1982. Chapman & Hall. ISBN 0 412 23380 0

Reference Books

N. Wirth Pascal User Manual and Report.
K. Jensen 2nd Edition 1975. Springer-Verlag. ISBN 0 387 90144 2

J. Tiberghien The Pascal Handbook,
1st Edition 1981. Sybex. ISBN 0 89588 053 9

L Logan Spectrum ROM Disassembly
F. O'Hara 1st Edition 1983. Melbourne House. ISBN 0 86161 116 0

n_ﬁaﬂ ZX Pascal User Manual

{

Other HiSoft Programs
for your Spectrum

HiSoft Devpac

The standard assembler development system, HiSoft Devpac has been used by
all the top software houses and is ideal for professional work or simply for

learning assembly language.

Devpac is a fast macro assembler/editor coupled with a front panel
disassembler/debugger. On a disk system (ZX Plus 3, Opus, Disciple and
microdrive) you can assemble disk-to-disk allowing any size program to be
assembled. The debugger is small and has a host of features (including single-
step, even in ROM) that allow you to trace faults in your programs or to hack
other programs. Cassette/microdrive,Opus Discovery, Disciple, Plus 3 versions.

HiSoft C

Ideal for learning the language, HiSoft C is a standard Kernighan & Ritchie
compiler for the Spectrum. The only real omission is floating-point arithmetic,
HiSoft C handles 16-bit integer numbers. Files are fully supported on
microdrive and there are extra functions to handle the Spectrum's sound and
graphics capabilities. Cassette/microdrive version.

HiSoft BASIC

Compiles virtually all of Spectrum BASIC very quickly indeed. Unlike other
floating-point BASIC compilers, HiSoft BASIC produces code that runs up to
100 times faster than interpreted BASIC. This is because you can specify
which variables are floating-point and which are integer, allowing the compiler
to optimise your code, just like other language compilers do. Programs up to
40K can be compiled on the 128K Spectrums (30K on 48K machines) at the
touch of a key and then saved to tape or disk as stand-alone programs.
Cassette/microdrive, Opus Discovery, Disciple, Plus 3 versions.

Please write or phone _for details of the above products and their prices.

Page 82 HiSoft ZX Pascal User Manual

