

Sinclair Logo 1
Turtle Graphics

Please Note:Please Note:Please Note:Please Note:
This manual was Scanned, OCR-ed and PDF by

Stephen Parry-Thomas 2-March 2004.
For ZX-Spectrum Users and to preserve the manual.

Sinclair Logo 1
Turtle Graphics

by Ellen Spaby Ellen Spaby Ellen Spaby Ellen Sparerrerrerrer
and the editorial staff of SOLI/LCSIand the editorial staff of SOLI/LCSIand the editorial staff of SOLI/LCSIand the editorial staff of SOLI/LCSI

This edition first published in 1984 by

Sinclair Research Ltd
25 Willis Road Cambridge CB1 2AQ England
ISBN 185016 018 X

Program and Documentation: © Copyright Logo Computer Systems Inc, 1983

© Copyright Les Systems d'Ordinateur Logo
 International, 1983
Packaging: © Copyright Sinclair Research Ltd, 1984
Cover Illustration: © Copy right Dave Eaton, Young Artists, 1984

SINCLAIR and ZX SPECTRUM are Trade Marks of Sinclair Research Ltd.
LOGO is a Trade Mark of Logo Systems Inc.

All rights reserved. No part of the LOGO program or documentation may be
reproduced in any form, either in whole or in part, without the specific written
permission of either Logo Computer Systems Inc or Les Systems d'Ordinateur Logo
International. Unauthorised hiring, lending or sale and repurchase prohibited.

Production supervised by Business Literature Services Ltd;
Typeset by Goodfellow & Egan Ltd;
French's Mill, French's Road, Cambridge CB4 3NP

Printed in England by Staples Printers St Albans Limited at The Priory Press.

Contents

Chapter 1Chapter 1Chapter 1Chapter 1 Logo on the ZX SpectrumLogo on the ZX SpectrumLogo on the ZX SpectrumLogo on the ZX Spectrum

Introduction 1
 What you need to start 1
 The keyboard 3

Chapter 2Chapter 2Chapter 2Chapter 2 Let's draw

Introduction 5
 Changing the turtle's state 5
 Snags 7
 Sinclair Logo vocabulary
 BACK BACK BACK BACK BKBKBKBK

CLEARSCREEN CLEARSCREEN CLEARSCREEN CLEARSCREEN CSCSCSCS
FORWARD FORWARD FORWARD FORWARD FDFDFDFD
LEFT LEFT LEFT LEFT LTLTLTLT
RIGHT RIGHT RIGHT RIGHT RTRTRTRT
SHOWTURTLE SHOWTURTLE SHOWTURTLE SHOWTURTLE STSTSTST

ChapteChapteChapteChapter 2r 2r 2r 2 A first procedureA first procedureA first procedureA first procedure
Teach the turtle to draw a square 9
Snags 11
Sinclair Logo vocabulary

 TOTOTOTO
ENDENDENDEND
ERASEERASEERASEERASE

Chapter 2Chapter 2Chapter 2Chapter 2 TEXTSCREEN, PRINT and REPEATTEXTSCREEN, PRINT and REPEATTEXTSCREEN, PRINT and REPEATTEXTSCREEN, PRINT and REPEAT
Textscreen 13
Clearing the textscreen 14
The REPEAT command 14
Special keys 15
Sinclair Logo vocabulary

 CLEARTEXT CLEARTEXT CLEARTEXT CLEARTEXT CTCTCTCT
PRINT PRINT PRINT PRINT PRPRPRPR
REPEATREPEATREPEATREPEAT
TEXTSCREEN TEXTSCREEN TEXTSCREEN TEXTSCREEN TSTSTSTS

Chapter 5 Chapter 5 Chapter 5 Chapter 5 The Sinclair Logo EditorThe Sinclair Logo EditorThe Sinclair Logo EditorThe Sinclair Logo Editor
Introduction 17

 EDIT 17
 SETSCRUNCH 19
 Building on your procedures 20
 Special keys 22
 Sinclair Logo vocabulary
 EDIT EDIT EDIT EDIT EDEDEDED

HIDETURTLE HIDETURTLE HIDETURTLE HIDETURTLE HTHTHTHT
SETSCRUNCSETSCRUNCSETSCRUNCSETSCRUNCH HHH SETSCRSETSCRSETSCRSETSCR

Chapter 6 Chapter 6 Chapter 6 Chapter 6 Saving and retrieving your workSaving and retrieving your workSaving and retrieving your workSaving and retrieving your work
Introduction 23

 Saving your work on cassette 23
 Retrieving your work 24
 Sinclair Logo vocabulary
 LOAD "filename LOAD "filename LOAD "filename LOAD "filename

SAVE "filename "procedSAVE "filename "procedSAVE "filename "procedSAVE "filename "procedurename(s)urename(s)urename(s)urename(s)

Chapter 7 Chapter 7 Chapter 7 Chapter 7 The turtle's pen and colourThe turtle's pen and colourThe turtle's pen and colourThe turtle's pen and colour

Introduction
 Pen commands 24
 Using Sinclair Logo colour graphics 25
 Snags 27
 Sinclair Logo vocabulary 30
 BACKGROUND BACKGROUND BACKGROUND BACKGROUND BGBGBGBG

PENCOLOUR PENCOLOUR PENCOLOUR PENCOLOUR PCPCPCPC
PENDOWN PENDOWN PENDOWN PENDOWN PDPDPDPD
PENERASE PENERASE PENERASE PENERASE PEPEPEPE
PENREVERSE PENREVERSE PENREVERSE PENREVERSE PXPXPXPX
PENUP PENUP PENUP PENUP PUPUPUPU
SETBORDER SETBRSETBORDER SETBRSETBORDER SETBRSETBORDER SETBR
SETPCSETPCSETPCSETPC
SETBGSETBGSETBGSETBG
WAITWAITWAITWAIT

Chapter 8 Chapter 8 Chapter 8 Chapter 8 A second look at editing proceduresA second look at editing proceduresA second look at editing proceduresA second look at editing procedures
Introduction 31

 Entering the Editor 31
 Leaving the Editor 32
 Summary of editing keys 33
 Editing outside the Editor 33

Chapter 9Chapter 9Chapter 9Chapter 9 Your workspaceYour workspaceYour workspaceYour workspace
Introduction
Printing out procedures 35
Erasing from the workspace 35
Saving your work on the printer 36
Sinclair Logo vocabulary 36
 COPYSCREENCOPYSCREENCOPYSCREENCOPYSCREEN

ERASE ERASE ERASE ERASE ERERERER
ERPSERPSERPSERPS
POPOPOPO
POPSPOPSPOPSPOPS
POTSPOTSPOTSPOTS
PRINTOFFPRINTOFFPRINTOFFPRINTOFF
PRINTONPRINTONPRINTONPRINTON

Chapter 10Chapter 10Chapter 10Chapter 10 A first project: Drawing a gardenA first project: Drawing a gardenA first project: Drawing a gardenA first project: Drawing a garden
Introduction 39
1 House 39
2 Two trees 41
3 Lawn 41
4 Sun 42
Garden 42

Chapter 11Chapter 11Chapter 11Chapter 11 Simple turtle geometrySimple turtle geometrySimple turtle geometrySimple turtle geometry
Polygons 43
Circles 44

Chapter 12 Chapter 12 Chapter 12 Chapter 12 Introducing variablesIntroducing variablesIntroducing variablesIntroducing variables
Introduction 45
Big squares and small squares 45
Some procedures using squares 47
Snags 48

Chapter 13 Chapter 13 Chapter 13 Chapter 13 Numbers and arithmeticNumbers and arithmeticNumbers and arithmeticNumbers and arithmetic
Infix and prefix 49
Sinclair Logo numbers 50
Sinclair Logo vocabulary

//// division
**** multiplication
---- subtraction
++++ addition
DIDIDIDIVVVV
PRODUCTPRODUCTPRODUCTPRODUCT
SUMSUMSUMSUM

Chapter 14 Chapter 14 Chapter 14 Chapter 14 The turtle's fieldThe turtle's fieldThe turtle's fieldThe turtle's field
Introduction 51

 WRAP, FENCE and WINDOW 53
 Using position to draw 54
 Sinclair Logo vocabulary
 FENCEFENCEFENCEFENCE

HEADINGHEADINGHEADINGHEADING
POSPOSPOSPOS
SESESESETHTHTHTH
SETPOSSETPOSSETPOSSETPOS
WINDOWWINDOWWINDOWWINDOW
WRAPWRAPWRAPWRAP
XCORXCORXCORXCOR
YCORYCORYCORYCOR

Chapter 15 Chapter 15 Chapter 15 Chapter 15 Assigning values to variablesAssigning values to variablesAssigning values to variablesAssigning values to variables

Introduction 57
 Using MAKE to draw 57

Chapter 16 Chapter 16 Chapter 16 Chapter 16 More circles and arcsMore circles and arcsMore circles and arcsMore circles and arcs

Circles 59
 The radius 60
 Arcs 61

Chapter 17Chapter 17Chapter 17Chapter 17 Exploring polygons and spiralsExploring polygons and spiralsExploring polygons and spiralsExploring polygons and spirals

Polygons 65
 Spirals 67

ChapterChapterChapterChapter 18 18 18 18 Exploring recursive proceduresExploring recursive proceduresExploring recursive proceduresExploring recursive procedures

Introduction 71
 Stopping recursive procedures 71
 Sinclair Logo vocabulary
 >>>>

BUTFIRSTBUTFIRSTBUTFIRSTBUTFIRST
FIRSTFIRSTFIRSTFIRST
IFIFIFIF
STOPSTOPSTOPSTOP

Chapter 19 Chapter 19 Chapter 19 Chapter 19 A game projectA game projectA game projectA game project

Creating a game 75
 Making a key into a game button 76
 Expanding the game project 77
 Tailpiece 80

Neither the authors nor the publishers can be held liable for any direct,
indirect, incidental or consequential damages relating to the use of the
LOGO program and documentation.

While every effort has been made to ensure the accuracy of the LOGO
program and documentation, the authors and publishers cannot be held
responsible for any error which may occur.

The authors and publishers reserve the right to change the LOGO manuals,
glossary and software at any time and without notice.

Les Systems d'Ordinateur Logo Computer Systems Inc
Logo International LCSI Inc
SO LI I ntl 9960 Cote De Lisse
33 de Poissy Lachine Quebec
75005 Paris CANADA H8T 1 A1
FRANCE

Chapter 1Chapter 1Chapter 1Chapter 1
Logo on the ZX Spectrum

INTRODUCTION
Welcome to Logo, a computer language which enables you to use your
computer to:
 Draw
 Write
 Play games
 Calculate.

This manual will teach you to do all these things.
 Unlike languages such as English or French, Logo does not have many
words or grammatical rules. However, there are a number of words - called
primitive procedures (primitives for short) - which Logo understands. These
primitives allow you to program your Spectrum in a number of ways. You can
write programs which draw, or which manipulate words and lists.
 However, you can also extend Logo's vocabulary. You can take the
primitive procedures which exist and use them to build new procedures. You
can then use your new procedures to build even more complex programs.
 This manual concentrates on programs which produce computer
graphics, i.e., pictures on the computer screen. Computer graphics allow you
to see clearly what you are doing as you are doing it, and are therefore a
good introduction to programming.
 This manual is not a complete user's guide, but it does enable you to start
programming and to edit your programs, and to save and retrieve your work.
For more advanced Logo you should refer to Sinclair Logo2 - Programming
 Reference Manual.
 You may run into problems as you work through this book, so we have
included some sections called Snags, which suggest how to solve them.

WHAT YOU NEED TO STARTWHAT YOU NEED TO STARTWHAT YOU NEED TO STARTWHAT YOU NEED TO START
To use Sinclair Logo you'll need four things:
 1 A 48K Sinclair Spectrum computer and power supply;
 2 A television or monitor;
 3 A cassette player;
 4 A Logo language cassette.

Connect the equipment as shown in the diagram.

Switch on the television set and turn the volume right down. Adjust the
tuning until the message:

© 1982 Sinclair Research Ltd

appears on the screen.

Put the Logo cassette into the tape recorder and set the volume control to
Just over half way.
 Press the J key on the Spectrum. The word LOAD will appear on the
television screen. Hold down the SYMBOL SHIFTSYMBOL SHIFTSYMBOL SHIFTSYMBOL SHIFT key and the PPPP key
twice. The message on the screen will now read LOAD “ ”.“ ”.“ ”.“ ”.
 If you have made a mistake typing the loading instructions in you can
delete an incorrect letter or word by holding down the CAPS SHIFTCAPS SHIFTCAPS SHIFTCAPS SHIFT key and
pressing the 0000 key.
 Press ENTER ENTER ENTER ENTER key. The message will disappear, and your Spectrum is
Now ready to be loaded with Logo.
 Press the `Play` on your tape recorder. After a few seconds you will
See a pattern of rapidly moving horizontal lines around the edge of the
Screen. This means that the program is loading.
 If this doesn’t happen, rewind the tape and adjust the tape recorder
volume a little. Unplug the 9V DC plug from the back of the Spectrum to
Clear its memory; then plug it back in. The Sinclair message will reappear, and
You can start the loading procedure again. When loading has finished, the
following message will appear on your screen:

WELCOME TO SINCLAIR LOGO
 © LCSI-SOLI 1984
This means that Logo is loaded, and you can switch off your tape
recorder.
 If the `Welcome` message does not appear on your screen, rewind the
 tape and start the loading procedure again making sure that you have carried
 out each step correctly. The Spectrum Introduction Manual gives detailed
instructions.
 The copyright notice on the screen:

LCSI-SOLI 1984
means that the program cannot legally be copied.

Logo uses the ? sign as a prompt. The small flashing rectangle is called the
cursor. It moves along the line as you type. Think of it as the point of a pencil;
it tells you where Logo is going to write the next character. The cursor shows
that Logo is ready and waiting to receive your instructions, a state known as
top level in Logo’s language

THE KEYBOARDTHE KEYBOARDTHE KEYBOARDTHE KEYBOARD
The keyboard is fully described in the manuals accompanying your ZX
Spectrum. However, the following notes will help you with your introduction
to Logo.

BREAK/SPACEBREAK/SPACEBREAK/SPACEBREAK/SPACE The BREAK/SPACEBREAK/SPACEBREAK/SPACEBREAK/SPACE key leaves a blank space.

ENTERENTERENTERENTER The ENTERENTERENTERENTER key tells Logo to execute, or carry
 out, any instructions you have written and
 returns the cursor to the beginning of the next
 line.
 The ENTERENTERENTERENTER key must be pressed each time
 you finish typing a Logo instruction. A Logo
 instruction begins with the prompt ? and may
 contain up to 250 characters - thus occupying
 many screen lines.

SYSSYSSYSSYS SYSSYSSYSSYS is our abbreviation for the SYMBOL
 SHIFT key.

for example: Pressing the SYS and P keys at the same time
 will produce ".

CAPSCAPSCAPSCAPS CAPSCAPSCAPSCAPS is our abbreviation for the CAPS SHIFTCAPS SHIFTCAPS SHIFTCAPS SHIFT
 key.

Pressing CAPSCAPSCAPSCAPS and the letter keys will produce
 upper case (capital) letters.

C MODEC MODEC MODEC MODE Pressing CAPSCAPSCAPSCAPS and 2222 will lock the keyboard in
 upper case mode - C MODEC MODEC MODEC MODE.

L MODEL MODEL MODEL MODE Pressing CAPSCAPSCAPSCAPS a second time will return you

 to lower case - L MODEL MODEL MODEL MODE.

DeleteDeleteDeleteDelete If you press CAPSCAPSCAPSCAPS and 0000 at the same time,

 Logo will delete one character to the left.

If you press CAPCAPCAPCAPSSSS and 5555 at the same time,
 Logo will move the cursor one character to
 the left- but will not delete anything.

If you press CAPSCAPSCAPSCAPS and 6666 at the same time in
 EDITEDITEDITEDIT mode (Chapter 5), Logo will move the
 cursor one line down.

If you press CAPSCAPSCAPSCAPS and 7777 at the same time in
 EDITEDITEDITEDIT mode (Chapter 5), Logo will move the
 cursor one line up.

If you press CAPSCAPSCAPSCAPS and 8888 at the same time,
 Logo will move the cursor one character to
 the right.

E MODEE MODEE MODEE MODE When you press CAPSCAPSCAPSCAPS and SYSSYSSYSSYS at the same
 time, you will see an EEEE in the lower left hand
 corner of your screen. E MODEE MODEE MODEE MODE allows you to
 use the characters printed in red underneath
 each key. You must hold the SYSSYSSYSSYS key down
 when pressing the third key indicated.

Chapter 2
Top of the Document
Let's draw

INTRINTRINTRINTRODUCTIONODUCTIONODUCTIONODUCTION
The best way to learn Logo is to experiment!

Let's begin programming by learning to draw designs. We will learn to draw
by driving a turtle, a small animal which 'lives' on the screen. Some Logo
turtles are robots which move about the floor on wheels, attached to the
computer by a cable. Our graphics turtle appears as a small triangle on the
screen. There are many instructions, or commands, you can give the turtle. In
this chapter we will introduce you to some of the most important. Type:

?SHOWTURTLE (press ENTERENTERENTERENTER)

Every time you give a command related to the turtle, your screen will split
into two parts. There will be two lines at the bottom where you write your
commands; the rest of the screen is the field over which the turtle can move.
 Notice that the shape of the turtle tells you both its position and its
heading (in which direction it is pointing). The position and heading are
known as the turtle's state.

CHANGING THE TURTLE'S STATECHANGING THE TURTLE'S STATECHANGING THE TURTLE'S STATECHANGING THE TURTLE'S STATE
We will now look at some of the instructions or commands for changing the
turtle's state. Many of them have abbreviations to make it simpler and
quicker to type them in. We will show these abbreviations as we introduce
new commands.
 We give specific examples, such as FORWARD 50FORWARD 50FORWARD 50FORWARD 50, but you should
experiment with different figures as you work though the text so that you
become familiar with the effects of the commands. You may type in upper or
lowercase characters (large or small letters), although Logo will interpret
them in upper case.
 Remember that you have to press the ENTERENTERENTERENTER key to make Logo execute
your commands.

?FORWARD 50 FD 50

FORWARD FORWARD FORWARD FORWARD is a command, which needs an input: information, which tells
 Logo how to carry out the command. In these examples, the input is a
 number. You may, of course, choose almost any input you like for Logo
commands - Logo will tell you if the input is not acceptable
 The space between the command and the input is very important
Because Logo distinguishes between the command FORWARD 50FORWARD 50FORWARD 50FORWARD 50 and the
word FORWARD50FORWARD50FORWARD50FORWARD50. On the other hand, if you leave extra spaces between
commands and their inputs, Logo will ignore them
 Notice that the turtle has changed its position, but not its heading the
direction in which it is pointing.

?RIGHT 90 TR 90

To change the turtle's heading, ask it to turn RIGHTRIGHTRIGHTRIGHT (RTRTRTRT), or LEFTLEFTLEFTLEFT (LTLTLTLT),
followed by the number of angular degrees through which you want it to
 Notice that, in this example, the turtle changes its heading but not its
position.

?BACK 50 BK 50

BACK, like FORWARD, tells the turtle to change its position but not its
heading. BACK tells the turtle to back away from its current position.

?LEFT 45 LT 45

The turtle turns 45° left of where it had been heading; it does not change its
Position. You can perhaps see what has happened more clearly if you now
ask the turtle to move FORWARD 25FORWARD 25FORWARD 25FORWARD 25.

?CLEARSCREEN CS

If you wish to clear the screen and start again, give the command
CLEARSCREENCLEARSCREENCLEARSCREENCLEARSCREEN. It erases all the lines the turtle has drawn and returns the
turtle to its original central position, facing towards the top of the screen.

SNAGSSNAGSSNAGSSNAGS
You may run into snags when using your Sinclair Logo. The turtle may not do
what you expect. Often, this will be caused by typing errors. In computer
jargon, an error is known as a bug.
 The most common bug for beginners is forgetting the space between the
command and the input. For example, FORWARD 50FORWARD 50FORWARD 50FORWARD 50 is a Logo instruction.
FORWARD50FORWARD50FORWARD50FORWARD50 is a word you might define yourself but probably haven't at
this point.
 The difference between the two instructions is merely a space between
words. The difference between FRWARDFRWARDFRWARDFRWARD and FORWARDFORWARDFORWARDFORWARD is merely 0000, but
for Logo, it is the difference between its being able to execute an action, and
sending you a message.

If you type:

?FORWARD50
Logo will return a message:

I don't know how to FORWARD50

Such messages are Logo's way of telling you that it has run into a snag, but it
will try to tell you what the snag is. If the message is more than one screen
line long, Logo will stop printing at the end of the line and a flashing arrow
will appear. Press ENTERENTERENTERENTER to see the next line, and continue until you have
read the whole message.

Chapter 3

A first procedure

TEACH THE TURTLE TO DRAW A SQUARETEACH THE TURTLE TO DRAW A SQUARETEACH THE TURTLE TO DRAW A SQUARETEACH THE TURTLE TO DRAW A SQUARE
There are certain words Logo automatically understands. These words, such
as FORWARD, RIGHTFORWARD, RIGHTFORWARD, RIGHTFORWARD, RIGHT etc, are the primitive procedures. From the moment
your Logo is loaded, it will understand FD 50FD 50FD 50FD 50, but the word SQUARESQUARESQUARESQUARE, for
example, will mean nothing to it.
 However, Logo can be taught to understand new procedures. For
example, you can give SQUARESQUARESQUARESQUARE a meaning by combining instructions so that
Logo knows how to SQUARESQUARESQUARESQUARE. You may call a procedure by any name,
provided that it is not the name of a primitive procedure.
 Using the commands FORWARDFORWARDFORWARDFORWARD and RIGHTRIGHTRIGHTRIGHT, we can make the turtle
draw a square.

?FD 30

?RT 90

?FD 30

?RT 90

?FD 30

?RT 90

?FD 30

?RT 90

We chose 30, as an input to FD for our example, but we could have chosen
any other number. The angle has to be 90, or the shape won't be square!
 Before you define a new procedure, you should first choose its name. We
might as well call the procedure for drawing a square SQUARESQUARESQUARESQUARE. You use the
instruction TOTOTOTO to signal to Logo that you will be defining a procedure; then
you write the name of the procedure on the same line.

?TO SQUARE

Then tell Logo what you want the procedure to do.

>FD 30 RT 90
 >FD 30 RT 90
 >FD 30 RT 90
 >FD 30 RT 90
 >END

Logo uses the > instead of the ???? as a prompt while you are defining a
procedure. This is to remind you that Logo is not executing your commands,
but remembering them. The word ENDENDENDEND - typed on a line of its own - signals
to Logo that you have finished defining the procedure. Logo will now return:

SQUARE defined
 ?

SQUARE definedSQUARE definedSQUARE definedSQUARE defined means that Logo now knows how to SQUARESQUARESQUARESQUARE, i.e., to carry
out all the instructions contained under the name SQUARESQUARESQUARESQUARE.
 The prompt ???? shows that Logo is ready to accept new instructions.
 Now let's ask Logo to SQUARESQUARESQUARESQUARE.

?SQUARE

SNAGSSNAGSSNAGSSNAGS
Suppose SQUARESQUARESQUARESQUARE does not work. Perhaps you have made a typing error.
Soon, you will learn to edit your procedures so that you can change parts
which do not work, or which you do not like.
 In the meantime, you can erase your procedure by typing:

?ERASE "SQUARE

If you now ask Logo to:

?SQUARE

a Logo message appears:

I don't know how to SQUARE

Now rewrite your SQUARE procedure.

Chapter 4Chapter 4Chapter 4Chapter 4
TEXTSCREEN, PRINT and REPEATTEXTSCREEN, PRINT and REPEATTEXTSCREEN, PRINT and REPEATTEXTSCREEN, PRINT and REPEAT
TEXTSCREENTEXTSCREENTEXTSCREENTEXTSCREEN
If you have been drawing with your Logo turtle, the command TEXTSCREENTEXTSCREENTEXTSCREENTEXTSCREEN
(TSTSTSTS) will make 22 lines of the screen available for text. The cursor is at the top
left hand corner.

Try typing the following:

?PRINT [HOW ARE YOU?] (press SYS YSYS YSYS YSYS Y for the [[[[)
HOW ARE YOU? (press SYS USYS USYS USYS U for the]]]])
?

Don't forget to leave a space between PRINTPRINTPRINTPRINT and the input.
 Suppose you made an error and typed:

?PRINT [HW RE YOU?]

DO NOT press the ENTERENTERENTERENTER key; press the DELETEDELETEDELETEDELETE (CAPS 0CAPS 0CAPS 0CAPS 0) key until your
screen shows:

?PRINT [H

and then retype the rest of the line.

?PRINT CHOW ARE YOU?]
 HOW ARE YOU?

The DELEDELEDELEDELETETETETE key (CAPS 0CAPS 0CAPS 0CAPS 0) is one of many editing facilities that Logo offers
you, enabling you to change what you have typed without rewriting the
entire instruction. You will meet more editing keys in the next chapter.
 You can experiment with Logo printing by typing PRINTPRINTPRINTPRINT, and enclosing
the sentence to be printed in square brackets [] .[] .[] .[] .

You can also ask Logo to print single words by using ".

?PRINT "HELLO (press SYS PSYS PSYS PSYS P for the """" sign)
 HELLO

CLEARING THE TEXTSCREENCLEARING THE TEXTSCREENCLEARING THE TEXTSCREENCLEARING THE TEXTSCREEN
The command CLEARTECLEARTECLEARTECLEARTEXT (CT)XT (CT)XT (CT)XT (CT) tells Logo to clear the screen of text, and
puts the cursor at the top of the screen.

If you are in graphics mode, the command CTCTCTCT will erase what is written on
the two lines used for text. You remain in graphics mode with the cursor on
the first of the two lines.
 Let's write a procedure using PRINTPRINTPRINTPRINT.

?TO GREET
 >SHOWTURTLE
 >PRINT [HI THERE]
 >END
 GREET defined
 ?GREET

The REPEATREPEATREPEATREPEAT command
You can use the command repeat to tell Logo to REPEAT an instruction, for
example:

?REPEAT 4 [GREET]

You can ask Logo to repeat something many, many times, and then stop it in
the middle.
For example:
 ?TH
 ?REPEAT 100 [PR [I AM THE GREATEST]]

If you press the CAPSCAPSCAPSCAPS and BREAK/SPACEBREAK/SPACEBREAK/SPACEBREAK/SPACE keys simultaneously before Logo
has finished executing the procedure, it will send you a message:

STOPPED !!!
 ?

SPECIAL KEYSSPECIAL KEYSSPECIAL KEYSSPECIAL KEYS
SYSSYSSYSSYS PPPP """"
CAPS CAPS CAPS CAPS BREAK/SPACE BREAK/SPACE BREAK/SPACE BREAK/SPACE STOPPED!!!STOPPED!!!STOPPED!!!STOPPED!!!
CAPS 0 CAPS 0 CAPS 0 CAPS 0 deletesdeletesdeletesdeletes
SYSSYSSYSSYS YYYY [[[[
SYSSYSSYSSYS UUUU]]]]

Chapter 5

The Sinclair Logo Editor

INTRODUCTION

While you are writing a procedure, you may wish to modify a previous line;
after you have tried running it, you may want to change or rewrite it.
 The Sinclair Logo Editor allows you to move the cursor anywhere on the
screen within a program, so that you can easily erase, move or insert
characters. This is known as a fullscreen editor.
 Note that, when you use the editor you will lose whatever is on your
screen; your turtle graphics, or text, will be replaced by the editing screen.

EDITEDITEDITEDIT
EDIT (ED)EDIT (ED)EDIT (ED)EDIT (ED) followed by the name of a procedure tells Logo that you want to
edit that procedure. You must put a " (quote mark) before the name; do not
leave a space between the " and the name.
 NOTE: the name of a procedure may not include spaces, but may include
numbers. You may choose any name you like as long as it is not the name of
a primitive, or a name already given to another procedure.
 Is your procedure SQUARESQUARESQUARESQUARE still in the computer? If so, type

?EDIT "SQUARE
 TO SQUARE
 FD 30 RT 90

FD 30 RT 90
 FD 30 RT 90

FD 30 RT 90
 END

When a procedure is already defined, Logo reprints the entire definition.
 The cursor is at the beginning of the top line.
 There is no prompt symbol when in the Editor.

LOGO EDITOR (c) SOLI/LCSI
appears at the bottom of the screen.
 To leave the Editor without having made any modifications to your
procedures, type CAPS BREAK/SPACE.CAPS BREAK/SPACE.CAPS BREAK/SPACE.CAPS BREAK/SPACE.
 You may also use the Logo Editor to write a new procedure. The
advantage of this is that you may make any corrections or modifications you
like while defining the procedure.

?EDIT "SQUARE1 Logo enters the Editor and prints

TO SQUARE1

You may now type the instructions which make up SQUARE1.

FD 40 RT 90 FD 40 RT 90
 FD 40 RT 90

FD 40 RT 90
 END

To move back, type (CAPS 5CAPS 5CAPS 5CAPS 5)

To move forward, type (CAPS 8CAPS 8CAPS 8CAPS 8)

To move up, type (CAPS 7CAPS 7CAPS 7CAPS 7)

To move down, type (CAPS 6CAPS 6CAPS 6CAPS 6)

When the cursor passes over characters, they remain unchanged.
 To erase one character left of the cursor, type DELETE (CAPS 0).DELETE (CAPS 0).DELETE (CAPS 0).DELETE (CAPS 0).
 Note that typing CAPS 0 at the beginning of the line will move the next line
 of text to the end of the previous line, for example:

FD 40
 RT 90
 Becomes

FD 40 RT 90

Leave the cursor where it is, and press ENTERENTERENTERENTER to separate the line again.

 When you have finished editing, type ENDENDENDEND and press E MODEE MODEE MODEE MODE, followed
 by CCCC; Logo will tell you:

SQUARE1 defined

Note that entering CAPS BREAK/SPACECAPS BREAK/SPACECAPS BREAK/SPACECAPS BREAK/SPACE causes Logo to forget all the work

 you have done in this session of the Editor.
 Try your new command; type:

?SQUARE1

If you type SQUARE1SQUARE1SQUARE1SQUARE1 again, the turtle will retrace its path. Using the REPEATREPEATREPEATREPEAT
 procedure we met earlier, we can tell Logo:

?REPEAT 8 [SQUARE1 RT 45]

Let's make a procedure for this design, and call it SQUARESTARSQUARESTARSQUARESTARSQUARESTAR. We can do
this using the EDITEDITEDITEDIT command.

?EDIT "SQUARESTAR
 TO SQUARESTAR
 REPEAT 8 [SQUARE1 RT 45]
 END

Don't forget to press E MODE CE MODE CE MODE CE MODE C when you finish editing. Let's try our new
procedure; put the turtle in its original position at the centre of the screen.

?CS
?SQUARESTAR

If you don't want to see the turtle, you can type

?HIDETURTLE

or its abbreviation HTHTHTHT.

SHOWTURSHOWTURSHOWTURSHOWTURTLE (ST)TLE (ST)TLE (ST)TLE (ST) makes the turtle visible again.

SETSCRUNCHSETSCRUNCHSETSCRUNCHSETSCRUNCH
If your squares look like rectangles, the problem may lie in your television or
monitor, and not in Logo. The Logo command SETSCRUNCHSETSCRUNCHSETSCRUNCHSETSCRUNCH allows you to
change the aspect ratio (the ratio of one vertical turtle step to one horizontal
turtle step) on the screen. Try:

?SETSCR [50 100]
then:

?CS SQUARESTAR

One turtle step on the y-axis will be twice as long as one turtle step on the

 x-axis.
 Try other settings to vary your designs. SETSCRUNCHSETSCRUNCHSETSCRUNCHSETSCRUNCH parameters are set
 in multiples of 100.
 Your normal Logo screen should be SCRUNCH [100100]SCRUNCH [100100]SCRUNCH [100100]SCRUNCH [100100]. Try different
 settings until you are satisfied with the results.
 Although you may write to Logo in either upper or lower case letters,
 Logo will, in most cases, transform the lower case to upper case. However,
 Logo will keep the lower case letters for instructions within a list, which
 follows a :::: (colon) and in some cases a """" (quote mark).
 For example:

?to smile
 >pr [pr "joke]
 >end
 SMILE defined

?edit "smile
 TO SMILE
 PR [pr "joke3
 END

NOTENOTENOTENOTE
If you type EDIT without an input, Logo will give you the last procedure you
edited.

BUILDING ON YOUR PROCEDURESBUILDING ON YOUR PROCEDURESBUILDING ON YOUR PROCEDURESBUILDING ON YOUR PROCEDURES
Once you have defined a procedure, it has the same status and behaviour as
a primitive procedure. Even if you press ENTERENTERENTERENTER or CSCSCSCS, Logo will retain its
knowledge of the procedures you have defined.
 Moreover, once you have defined a procedure, you may use it as you
would any Logo primitive procedure, such as BKBKBKBK, RTRTRTRT, etc. A procedure you
define may therefore be used as part of other procedures; this is one of
Logo's powerful features.

FLAG, CROSS, FLAGBACK, FLAGS, MANYFLAGSFLAG, CROSS, FLAGBACK, FLAGS, MANYFLAGSFLAG, CROSS, FLAGBACK, FLAGS, MANYFLAGSFLAG, CROSS, FLAGBACK, FLAGS, MANYFLAGS
Let's look at some designs which can use SQUARE 1SQUARE 1SQUARE 1SQUARE 1.

?TO FLAG
 >FD 30
 >SQUARE
 >END
 FLAG defined
 ?FLAG

?TO CROSS
>REPEAT 4 [FLAG RT 90]
>END
CROSS defined
?CROSS

?TO FLAGBACK
>FLAG
>BK 30
>END
FLAGBACK defined

?TO FLAGS
>REPEAT 4 [FLAGBACK RT 903
>END
FLAGS de-fined
?FLAGS

?TO MANYFLAGS
>FLAGS
>RT 45
>FLAGS
>END
MANYFLAGS defined
?MANYFLAGS

Both FLAGFLAGFLAGFLAG and FLAGBACKFLAGBACKFLAGBACKFLAGBACK make the turtle draw the same design but they
leave the turtle in different states. Both procedures leave the turtle with the
same heading, but FLAGFLAGFLAGFLAG leaves the turtle in a different Position.
 FLAGBACKFLAGBACKFLAGBACKFLAGBACK leaves the turtle in the same position on the screen as it
Started in. We can see the effects of these differences in CROSSCROSSCROSSCROSS and FLAGSFLAGSFLAGSFLAGS.
CROSSCROSSCROSSCROSS runs FLAGSFLAGSFLAGSFLAGS four times, while FLAGSFLAGSFLAGSFLAGS runs FLAGBACKFLAGBACKFLAGBACKFLAGBACK four times.
 If you turn your computer off now, you will lose all the procedures you
 have written - not to mention Logo itself. In the next chapter, we will
describe how you can save your procedures.

SPECIAL KEYSSPECIAL KEYSSPECIAL KEYSSPECIAL KEYS

(CAPS 5) (CAPS 5) (CAPS 5) (CAPS 5) �
(CAPS 6) (CAPS 6) (CAPS 6) (CAPS 6) �
(CAPS 7) (CAPS 7) (CAPS 7) (CAPS 7) �
(CAPS 8) (CAPS 8) (CAPS 8) (CAPS 8) �
(CAPS O) (CAPS O) (CAPS O) (CAPS O) deletedeletedeletedelete
E MODE CE MODE CE MODE CE MODE C
CAPS BREAK/SPACECAPS BREAK/SPACECAPS BREAK/SPACECAPS BREAK/SPACE

Chapter 6

Saving and retrieving your work

INTRODUCTION
While you are programming in Sinclair Logo, your Spectrum remembers all
the procedures you have taught it. Unfortunately, when you turn the
machine off, it 'forgets'.
 When you define procedures, Logo puts them in your workspace –t he
space in the computer memory that lasts only while the computer is on.
 However, you may save the procedures you have written on a cassette
tape. You can do this at any time during a Logo session using the command
SAVESAVESAVESAVE, and retrieve them later using the command LOADLOADLOADLOAD. If you don't save
your work, everything you have done will be destroyed when you turn the
machine off.
 Information is organised into files. You give the file a name and decide
how many of your procedures - from one to all of them - you want to put
into the file with that name.
Then you can name another file for more procedures, and so on.

SAVING YOUR WORK ON CASSETTESAVING YOUR WORK ON CASSETTESAVING YOUR WORK ON CASSETTESAVING YOUR WORK ON CASSETTE
Any cassette recorder with an input socket for use with a microphone will do.
It is useful if it has a tape counter, but this is not essential. Look at the
diagram at the front of the book. Before trying to save your work, you should
remove the EAR − EAR connection and connect MIC − MIC. If you have any
problems, see your Introduction to the Sinclair Spectrum.
 When you are using cassette Logo, everything in your workspace at the
time can be saved on one cassette. The first time you create a file of your
workspace, insert a blank cassette into the tape recorder, rewind the tape to
the beginning of the magnetic part (not the leader), and set the counter to
000. Next type:

?SAVE "MYFILE "SQUARE1

You may give your file any name you like, as long as it has no more than
seven characters. The filename must be preceded by a """" (quote mark), and
followed by the name of the procedure to be saved, also preceded by a """".

You may save more than one procedure in a file by using brackets. For
example:

?SAVE "MYFILE [SQUARE1 GREET]

Pull out the 'ear' jack from the ZX Spectrum.

Set the tape recorder by simultaneously pressing PLAY, RECORD and
PAUSE. Type in the SAVE message and press ENTER. Logo will then tell you
to press any key and start the tape; do so. While Logo is recording, the screen
flashes. When it finishes flashing, stop the tape; Logo will have saved the
procedures you have named.
 When saving is complete, the prompt and cursor reappear on the screen,
and you can turn the computer off.
 The same side of your cassette can be used to save several different files.
 It's a good idea to keep a written record describing each file; write down
the beginning and end counter number each time you save. Advance the
tape recorder approximately 10 counts before saving the contents of another
workspace.

RETRIEVING YOUR WORKRETRIEVING YOUR WORKRETRIEVING YOUR WORKRETRIEVING YOUR WORK
Set up your Spectrum, and load Logo. (Don't forget to make sure that the
tape recorder is connected for loading, rather than saving.) Prepare your
tape, by setting it and the counter of your recorder to the number of the file
that you want to retrieve. Then type:

?LOAD "MYFILE

(or whatever the name of the file is).
 Replace the 'ear' jack if it is out; don't forget to press ENTERENTERENTERENTER on your
Spectrum, and start the tape.
 Logo will print the name of the file it is loading followed by LOGLOGLOGLOG.
 While loading, your screen flashes. When the file is loaded, Logo will tell
you that the procedures are defined, for example:

?LOAD "MYFILE
 MYFILE LOG

(screen flashes)

SQUARE1 DEFINED
 GREET DEFINED
 ?
Everything you saved in MYFILEMYFILEMYFILEMYFILE will be loaded back into your workspace. The
prompt and cursor reappear on the computer screen when the loading is
complete.

Careful: If you give the same filename to two or more files, Logo will replace
the older one with the more recent. So, for example, if you wish to have more
procedures in MYFILEMYFILEMYFILEMYFILE, load "MYFILE"MYFILE"MYFILE"MYFILE, and then save it again, containing your
new selection of procedures.

Chapter 7

The turtle's pen and colour

INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION
The turtle leaves a trace whenever you give it a graphics command: it has a
pen with which it can draw. If you want the turtle to move without leaving a
trace, you can ask it to lift its pen. You can also change the colour of the trace
by changing the colour of the pen, the colour of the background, and the
colour of the border. This chapter tells you how to use the pen and the colour
graphics.

PEN COMMANDSPEN COMMANDSPEN COMMANDSPEN COMMANDS
To lift the turtle's pen, type:

?PENUP (PU)

To make the turtle draw again, type:

?PENDOWN (PD)

Experiment with these two commands.

?FD 20

?PU FD 20

?PD FD 20

In addition to PEN UP (PU)PEN UP (PU)PEN UP (PU)PEN UP (PU) and PENDOWN (PD)PENDOWN (PD)PENDOWN (PD)PENDOWN (PD), there are two other
commands for changing the state of the turtle's pen, PENERASE (PE)PENERASE (PE)PENERASE (PE)PENERASE (PE) and
PENREVERSE (PX)PENREVERSE (PX)PENREVERSE (PX)PENREVERSE (PX).

PENERASEPENERASEPENERASEPENERASE turns the turtle into an eraser. When it travels over a line, it erases
it. To make it draw again, type PENDOWNPENDOWNPENDOWNPENDOWN or PDPDPDPD. For example (assuming
SQUARE1SQUARE1SQUARE1SQUARE1 is loaded):

?CS PD
 ?SQUARE1

Now type::::
?PE

 ?SQUARE1

PENREVERSE (PX)PENREVERSE (PX)PENREVERSE (PX)PENREVERSE (PX) is a mixture of PDPDPDPD and PE.PE.PE.PE.
 When you give Logo this command, the turtle will draw where there is a
blank space and erase where a line already exists. For example:

?PX
 ?SQUARE1

?SQUARE1

?SQUARE1

PENDOWN (PD)PENDOWN (PD)PENDOWN (PD)PENDOWN (PD) will return the pen to its normal drawing state.

USING SINCLAIR LOGO COLOUR GRAPHICSUSING SINCLAIR LOGO COLOUR GRAPHICSUSING SINCLAIR LOGO COLOUR GRAPHICSUSING SINCLAIR LOGO COLOUR GRAPHICS
This section is applicable only if you are using a colour television or monitor;
in black and white you will see only shades of grey.
 There are three types of colour changes you can make. You can change
the colour of the turtle's field or BACKGROUNDBACKGROUNDBACKGROUNDBACKGROUND by using the command
SETBG.SETBG.SETBG.SETBG.

You can change the colour of the turtle's pen or PENCOLOURPENCOLOURPENCOLOURPENCOLOUR, by using
the command SETPCSETPCSETPCSETPC.
 You can change the colour of the border of the turtle's field and of the
text screen by using the command SETBORDERSETBORDERSETBORDERSETBORDER or SETBRSETBRSETBRSETBR.
 Each of these commands takes one input: a number which corresponds to
the desired colour, as it appears above the top row of keys on your Spectrum
keyboard.

0 Black
 1 Blue
 2 Red
 3 Magenta (purple)
 4 Green
 5 Cyan (blue)
 6 Yellow
 7 White

Changing the colour of the background

?SETBG ?SETBG ?SETBG ?SETBG 0000
?SETBG ?SETBG ?SETBG ?SETBG 1111
?SETBG ?SETBG ?SETBG ?SETBG 2222
?SETBG ?SETBG ?SETBG ?SETBG 3333
?SETBG ?SETBG ?SETBG ?SETBG 4444

We can write a procedure which cycles through all the colours. Let's make
 use of the command WAIT, which tells Logo to WAITWAITWAITWAIT for n/60ths of a second
 before executing the next command.

?TO COL.BK
 >SETBG 0 WAIT 20
 >SETBG 1 WAIT 20
 >SETBG 2 WAIT 20
 >SETBG 3 WAIT 20
 >SETBG 4 WAIT 20
 >SETBG 5 WAIT 20
 >SETBG 6 WAIT 20
 >SETBG 7 WAIT 20
 >END
 COL.BK defined
 Try:
 ?REPEAT 3 [COL.BK]

The command BACKGROUND (BG)BACKGROUND (BG)BACKGROUND (BG)BACKGROUND (BG) will give you the current colour of the

 background.

?PR BG
 ?
We can modify our program:

?TO BACKGR
 >SETBG BG + 1 WAIT 20
 >END
 BACKGR defined

?TO CB
 >REPEAT 7 LBACKGR3
 >END
 CB defined

Changing the colour of the penChanging the colour of the penChanging the colour of the penChanging the colour of the pen
Use the command SETPC;SETPC;SETPC;SETPC; the code for the pen colours is the same as that for
the background.
 If you have changed the pen colour, and give the command
TEXTSCREEN,TEXTSCREEN,TEXTSCREEN,TEXTSCREEN, Logo will write in the pen colour you have set. However, the
two lines at the bottom of your graphics screen will always appear in black
(or white if you have a dark border) regardless of the pen colour set.
Try typing the following:

?SETBG 0
 ?CS
 ?SETPC 2 SQUARE1
 ?RT 45 SETPC 3 SQUARE1
 ?RT 45 SETPC 4 SQUARE1
Now type:

RT 45 SETPC 0 SQUARE1

No square appears! Of course - since the pencolour and the background
colour are the same, nothing shows on your screen.
 The command PC PC PCPC will give you the current code number for the pen
colour.

?PR PC
 0
Try the following procedure:

?TO TOTO
 >REPEAT 8 [FD 30 RT 45]
 >END
 TOTO defined

?SETBG 7
 7SETPC 1
 ?TOTO

?TO TOTAL
 >CS REPEAT 18 [TOTO RT 20]
 >HT
 >END
 TOTAL defined

Now try changing the background and pen colours:

?TO CHANGECOL

 >SETPC PC + 1
 >SETBG BG + 1
 >REPEAT 4 [FD 30 RT 45]
 >RT 20
 >END
 CHANGECOL defined
 ?REPEAT 8 [CHANGECOL]

Changing the colour of the borderChanging the colour of the borderChanging the colour of the borderChanging the colour of the border
The primitive SETBORDERSETBORDERSETBORDERSETBORDER or SETBRSETBRSETBRSETBR allows you to change the colour of the
 border of your screen. The colour codes are the same as before. Try:

?SETBR 1

SNAGSSNAGSSNAGSSNAGS
You will sometimes find that changing the background affects the colour of
the traces already on the screen. This shows up most often with PENERASE
and PENREVERSEPENREVERSEPENREVERSEPENREVERSE.
 Colours will vary depending on the type of television or monitor and its
condition and adjustment.

Chapter 8Chapter 8Chapter 8Chapter 8
A second look at editing proceduresA second look at editing proceduresA second look at editing proceduresA second look at editing procedures
INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION
You may use your Sinclair Logo Editor to change existing procedures as well
as to define new ones. This is helpful if you want to correct an error or change
what a procedure does.
 For example, let's draw a triangle:

?TO TRIANGLE
 >FD 45 RT 120
 >FD 45 RT 120
 >FD 45 RT 120
 >END
 TRIANGLE defined
 ?TRIANGLE

ENTERING THE EDITORENTERING THE EDITORENTERING THE EDITORENTERING THE EDITOR
You may enter the Editor in several ways. Each one has a slightly different
result. If you type:

ED or EDIT

not followed by a procedure name, Logo will bring you the last procedure
you wrote, or modified in the Editor.

ED "TOTO or EDIT "TOTO
or
 ED [TOTO TOTAL] or EDIT [TOTO TOTAL]

will tell Logo to look for the named procedure(s) and put them on your Editor
screen. If the named procedure(s) have not been previously defined, Logo
will bring you an empty Editor screen.

ED [] or EDIT []

(with empty brackets), tells Logo to give you a blank Editor screen
 Suppose we want to turn our triangle. Type:

?EDIT "TRIANGLE

Your screen will now show the text of the procedure TRIANGLE:TRIANGLE:TRIANGLE:TRIANGLE:

TO TRIANGLE
 FD 45 RT 120

FD 45 RT 120
 FD 45 RT 120

END
The cursor is positioned on the letter T of the word TO; to edit you move the

 cursor where you want to add or delete characters.
 First, move the cursor to the end of the title line using the � key
 (CAPS 8CAPS 8CAPS 8CAPS 8). Now press the ENTERENTERENTERENTER key; this will insert a line. You can now type:

RT 30

To move the cursor to the end of the text, type E MODE EE MODE EE MODE EE MODE E.

LEAVING THE EDITORLEAVING THE EDITORLEAVING THE EDITORLEAVING THE EDITOR
Typing E MODE CE MODE CE MODE CE MODE C tells Logo to incorporate the modifications you have
made, and that you have finished editing. Logo will now send you a
message:

TRIANGLE defined

If you change your mind and decide you do not want Logo to incorporate the
modification you have made, type CAPS BREAK/SPACECAPS BREAK/SPACECAPS BREAK/SPACECAPS BREAK/SPACE. Logo will then exit
from the Editor, leaving the program exactly as it was before you started
editing.

?TRIANGLE

SUMMARY OF EDITING KEYSSUMMARY OF EDITING KEYSSUMMARY OF EDITING KEYSSUMMARY OF EDITING KEYS
CAPS 5CAPS 5CAPS 5CAPS 5 Moves cursor left one character
CAPS 6CAPS 6CAPS 6CAPS 6 Moves cursor down one line
CAPS 7CAPS 7CAPS 7CAPS 7 Moves cursor up one line
CAPS 8CAPS 8CAPS 8CAPS 8 Moves cursor right one character
CAPS 0CAPS 0CAPS 0CAPS 0 Deletes character to left
E MODE CAPS 5E MODE CAPS 5E MODE CAPS 5E MODE CAPS 5 Moves cursor to beginning of line
E MODE CAPS 6E MODE CAPS 6E MODE CAPS 6E MODE CAPS 6 Moves cursor to end of screen
E MODE CAPS 7E MODE CAPS 7E MODE CAPS 7E MODE CAPS 7 Moves cursor to beginning of screen
E MODE CAPS 8E MODE CAPS 8E MODE CAPS 8E MODE CAPS 8 Moves cursor to end of line
E MODE BE MODE BE MODE BE MODE B Moves cursor to beginning of text
E MODE EE MODE EE MODE EE MODE E Moves cursor to end of text
E MODE NE MODE NE MODE NE MODE N Moves cursor to next page
E MODE PE MODE PE MODE PE MODE P Moves cursor to previous page
E MODE YE MODE YE MODE YE MODE Y Erases (yanks) line from screen
E MODE RE MODE RE MODE RE MODE R Re-inserts line just erased by the E MODE Y command
 At the beginning of a line, will order Logo to execute the
 instructions it just carried out

EDITING OUTSIDE THE EDITOREDITING OUTSIDE THE EDITOREDITING OUTSIDE THE EDITOREDITING OUTSIDE THE EDITOR
While all the special editing keys work outside the Editor, many of them only
work within one Logo line. A Logo line is a line which starts with the prompt ?
and finishes when you press the ENTERENTERENTERENTER key, and may contain up to 250
characters.
 Certain editing commands work all the time. For example, type:

?TRIANGLE

Now type E MODE RE MODE RE MODE RE MODE R. This will copy the last line you typed, and TRIANGLETRIANGLETRIANGLETRIANGLE
will reappear on your screen. The cursor is at the end of the line. Type EEEE
MODE 5MODE 5MODE 5MODE 5 to move cursor to beginning of the line.
Now enter:

?LT 90

Type E MODE RE MODE RE MODE RE MODE R again, and press ENTERENTERENTERENTER.

Logo 2, the Programming Reference Manual gives a more detailed
Description of the Editor and editing keys.

Chapter 9

Your works pace

INTRODUCTION

Your workspace contains all the procedures you have defined. Logo has
certain primitives which help you to organise your procedures in the
workspace, and to eliminate those you no longer want.
 To find out what is in your workspace, you can ask Logo to print out the
titles of the procedures, or their definitions.

PRINTING OUT PROCEDURESPRINTING OUT PROCEDURESPRINTING OUT PROCEDURESPRINTING OUT PROCEDURES
POTSPOTSPOTSPOTS (PPPPrint OOOOut TitleSSSS), prints out the title and the title lines of each of the
procedures in the workspace.

?TS
 ?POTS
 TO TRIANGLE
 TO CHANGECOL
 TO TOTAL
 -

-
-

If you type SYSSYSSYSSYS S S SS, Logo will stop its display and wait until you ask it to
continue by pressing any key.
 POPSPOPSPOPSPOPS (PPPPrint OOOOut PPPProcedures) prints the definitions of all the procedures in
your workspace.

?POPS
 TO TRIANGLE
 RT 30
 FD 45 RT 120
 FD 45 RT 120
 FD 45 RT 120
 END

TO CHANGECOL
 SETBG BG + 1
 REPEAT 4 [FD 30 RT 45]
 RT 20
 END

????

You can print out the definition of a particular procedure with the command
 POPOPOPO (PPPPrint OOOOut).

?PO "SQUARESTAR
 TO SQUARESTAR
 REPEAT 8 [SQUARE1 RT 45]
 END
PO can also be given a list of names; for example:

?PO [SQUARE1 SQUARESTAR TRIANGLE]

will tell Logo to print out the three procedures whose names are in the input
list. Remember, you can use TSTSTSTS or TEXTSCREENTEXTSCREENTEXTSCREENTEXTSCREEN to get a full screen of text,
which will make it easier to read.

ERASING FROM THE WORKSPACEERASING FROM THE WORKSPACEERASING FROM THE WORKSPACEERASING FROM THE WORKSPACE
You can erase procedures from your workspace. But, be warned! If you want
your procedures and have not saved them, you will have to type them in
again, so be sure that you really have finished with them before you erase
them.
 ERASEERASEERASEERASE (ERERERER) eliminates the definition of the named procedure.

?ER "TRIANGLE

will erase the procedure TRIANGLE.

?ER [TRIANGLE SQUARE1 FLAG]

will erase the procedures in the list.

?ERPS

(ERERERERase PPPProcedures) erases all your procedures from the workspace.

SAVING YOUR WORK ON THE PRINTERSAVING YOUR WORK ON THE PRINTERSAVING YOUR WORK ON THE PRINTERSAVING YOUR WORK ON THE PRINTER
In order to get a hard copy (on paper) of your workspace, you must have a
ZX Spectrum Printer connected to your Sinclair Spectrum. If you do, typing:

?PRINTON
 ?PO "TRIANGLE

will tell Logo to print the procedure TRIANGLETRIANGLETRIANGLETRIANGLE. You may ask Logo to print
more than one procedure by typing:

?PRINTON
 ?PO [TRIANGLE SQUARE]

To stop the Printer, type:

?PRINTOFF

If you wish to save a graphics screen, ie a design or drawing you have made,
use the command:

COPYSCREEN
 ?TOTAL
 ?COPYSCREEN

Logo will copy everything on your screen except the two lines of commands
at the bottom.

Chapter 10Chapter 10Chapter 10Chapter 10
A first project: Drawing a gardenA first project: Drawing a gardenA first project: Drawing a gardenA first project: Drawing a garden
INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION
Our first project will be to draw a GARDENGARDENGARDENGARDEN which contains a HOUSEHOUSEHOUSEHOUSE, a SUNSUNSUNSUN,
two TREESTREESTREESTREES and a LAWNLAWNLAWNLAWN.
 Logo's capacity for defining new procedures allows us to divide the
project into smaller parts.
 Let's start by drawing a picture of our garden on a sheet of paper.

We can see that the GARDENGARDENGARDENGARDEN is made up of:
 1 HOUSE1 HOUSE1 HOUSE1 HOUSE

2 two TREES2 two TREES2 two TREES2 two TREES
3 LAWN3 LAWN3 LAWN3 LAWN
4 SUN4 SUN4 SUN4 SUN

We can write separate procedures for each. Then we will think about putting
them together.

1 HOUSE1 HOUSE1 HOUSE1 HOUSE
As a first step, let's break the HOUSEHOUSEHOUSEHOUSE down into its subparts. We see it is
made up of a SQUARESQUARESQUARESQUARE and a TRIANGLETRIANGLETRIANGLETRIANGLE. Let's write a procedure for each.
 We will call the house square SQUARE2SQUARE2SQUARE2SQUARE2

?TO SQUARE2
 >REPEAT 4 [FD 45 RT 90]
 >END
 SQUARE2 defined

Let's print our previously defined procedure TRIANGLETRIANGLETRIANGLETRIANGLE.

?PO "TRIANGLE
 TO TRIANGLE
 RT 30

FD 45 RT 120
 FD 45 RT 120

FD 45 RT 120
 END
Now we'll put the two together to make a house.

?TO HOUSE
 >SQUARE2
 >TRIANGLE
 >END
 HOUSE defined
 ?HOUSE

Not quite what we had in mind!

?ED "HOUSE
 TO HOUSE
 SQUARE2
 FD 45

TRIANGLE
 END
 HOUSE defined
 ?HOUSE

That’s better!

2 two TREESTREESTREESTREES
Let’s start by making one TREE.TREE.TREE.TREE.

?TO TREE
>FD 50
>REPEAT 36 [FD 30 BK 30 RT 10]
>BK 50
>END
TREE defined
?HT TREE

We can now write a program which draws a tree, moves the turtle, and
draws a second tree.

?TO TREES
 >TREE
 >PU LT 90 FD 30 LT 90 FD 50 RT 1 !
 80 PD

>TREE
 >END
 TREES defined
 ?TREES

3 Let's now make the LAWNLAWNLAWNLAWN which will border our GARDENGARDENGARDENGARDEN.

?TO LAWN
 >REPEAT 45 CFD 10 BK 10 RT 90 FD!
 5 LT 90]
 >END
 LAWN defined
 ?LAWN

4 Finally, let's make the SUNSUNSUNSUN which rises on the GARDEN!GARDEN!GARDEN!GARDEN!

?TO SUN
 >HT
 >REPEAT 26 [FD 15 BK 15 RT 18]
 >END
 SUN defined
 ?SUN

Let's think about how to put these procedures together to draw the
GARDENGARDENGARDENGARDEN. We have to make sure that at the end of each procedure, the turtle
is in the right position for executing the next procedure. Try drawing the
garden before you look at the procedure below.

?TO GARDEN
 >HOUSE
 >PU LT 150 FD 80 RT 120 PD
 >TREES
 >LAUN
 >PU FD 100 LT 90 FD 15 RT 90 PD
 >SUN
 >PR [WELCOME TO MY GARDEN]
 >END
 GARDEN defined
 ?GARDEN

Now try drawing each part in a different colour!

Chapter 11Chapter 11Chapter 11Chapter 11
Simple turtle geometrySimple turtle geometrySimple turtle geometrySimple turtle geometry
POLYGONSPOLYGONSPOLYGONSPOLYGONS
When we wrote the procedure HOUSEHOUSEHOUSEHOUSE, we made an equilateral triangle, that
is, a triangle where all the sides are equal and all the angles are equal.
 If you remember, we had to turn 120° at each corner. Here is the reason
why. When the turtle starts a triangle trip, it must turn 360° - a complete turn
- before it returns to its starting state: 3 x 120° = 360°. Remember that to
draw a square the turtle turned 4 x 90° = 360°. As long as the sum of the
angles is 360°, you will get a closed figure. We call this the turtle's theorem!

REPEAT 3 [FD 30 RT 120] →→→→ TRIANGLE
 REPEAT 4 [FD 30 RT 90] →→→→ SQUARE
 REPEAT 5 [FD 30 RT 72] →→→→ PENTAGON
 REPEAT 6 [FD 30 RT 60] →→→→ HEXAGON

Let's make a new TRIANGLETRIANGLETRIANGLETRIANGLE procedure using the instructions we have
written above, and then play with it a bit.

?TO TRI
 >REPEAT 3 [FD 30 RT 120]
 >END
 TRI defined

?REPEAT 3 [TRI RT 120]

?REPEAT 6 [TRI RT 60]

If you want to work out how many times the turtle needs to repeat a set of
 instructions to make a closed figure, divide the number of degrees into 360.
 For example, if the turtle turns an angle of 30° each time, it has to repeat the
 instructions 360/30, or 12 times.
 However, Logo can do arithmetic so it can therefore do the division for
you:

?REPEAT 360/30 [TRI RT 30]

CIRCLESCIRCLESCIRCLESCIRCLES
Have you noticed yet that the more sides a polygon has, the more it

 resembles a circle? If you have experimented with polygons by increasing the
 number of sides, you may have discovered the circle!

?REPEAT 360 [FD 1 RT 1]

This circle looks fine, but it takes a long time to draw. That's because it
repeats the instructions 360 times.
 Can you make a plausible circle more quickly?

Chapter 12Chapter 12Chapter 12Chapter 12
Introducing variablesIntroducing variablesIntroducing variablesIntroducing variables
INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION
We are now quite familiar with the notion of inputs: the specific information

 which primitive procedures such as FORWARDFORWARDFORWARDFORWARD and RIGHTRIGHTRIGHTRIGHT need to give
 them meaning. The procedures you write can also have inputs. Because you
 can choose any input within an allowed range, it is sometimes called a
 variable - because it can vary. Let's see how we can use variables.

BIG SQUARES AND SMALL SQUARES BIG SQUARES AND SMALL SQUARES BIG SQUARES AND SMALL SQUARES BIG SQUARES AND SMALL SQUARES
We might want the turtle to draw squares with sides of 50 or 60 or 100 or 10.
One way to do this is to write many procedures:
SQUAREFIFTY, SQUARESIXTYSQUAREFIFTY, SQUARESIXTYSQUAREFIFTY, SQUARESIXTYSQUAREFIFTY, SQUARESIXTY etc.
 But there is a short cut. We elm change the procedure SQUARESQUARESQUARESQUARE so that it
 takes a variable input. Then we can tell Logo how long to make its side by
 typing:

?SQUARE 50
 ?SQUARE 60 etc

Let's edit our SQUARESQUARESQUARESQUARE procedure:

?ED "SQUARE
 TO SQUARE
 FD 30 RT 90

FD 30 RT 90
 FD 30 RT 90

FD 30 RT 90
 END

Since what should vary here is the length of the SIDESIDESIDESIDE of each square, we can
call our variable SIDE.SIDE.SIDE.SIDE.
 Variables are always indicated on the title line by writing: (colon)
followed by the name of the variable. The colon tells Logo that the word
which follows is the name of a variable. So use your editing commands to
change the title line of the procedure.

TO SQUARE :SIDE
 FD :SIDE
 RT 90

FD :SIDE
 RT 90

FD :SIDE
 RT 90

FD :SIDE
 RT 90

END
 SQUARE defined

The :::: (colon) tells Logo that the word which follows names a container that
may have in it a number, another word, a list, or a list of lists.
 Here, the expression :SIDE:SIDE:SIDE:SIDE stands for 'whatever happens to be in the
container SIDE'SIDE'SIDE'SIDE'. There must be something in the container for Logo to carry
out the command FORWARD :SIDEFORWARD :SIDEFORWARD :SIDEFORWARD :SIDE.
 You can now give any value you wish to the variable SIDE;SIDE;SIDE;SIDE; indeed, you
must indicate the value of SIDE before you can execute the procedure.

?CS
 ?SQUARE 10
 ?SQUARE 20
 ?SQUARE 30
 ?SQUARE 40

If you now ask Logo to:

?SQUARE

you receive a message:

Not enough inputs to SQUARE

The container is filled when you type SQUARE 10SQUARE 10SQUARE 10SQUARE 10 (or whatever value you
like); Logo puts the value you type into the container named SIDESIDESIDESIDE.

SOME PROCEDURES USING SQUARES SOME PROCEDURES USING SQUARES SOME PROCEDURES USING SQUARES SOME PROCEDURES USING SQUARES
?TO SQUARES

 >SQUARE 10
 >SQUARE 20
 >SQUARE 30
 >SQUARE 40
 >END
 SQUARES defined

?TO DIAMONDS
 >RT 45
 >REPEAT 4 [SQUARES RT 90]
 >HT
 >END
 DIAMONDS defined
 ?DIAMONDS

?TO FLAGR :SIZE
 >FD :SIZE
 >SQUARE :SIZE
 >BK :SIZE
 >END
 FLAGR defined
 ?FLAGR

But note, our procedure was called SQUARE :SIDESQUARE :SIDESQUARE :SIDESQUARE :SIDE. It had a different name
for its input.
 SIDE, which is the variable name for SQUARESQUARESQUARESQUARE, receives its value from
 :SIZE:SIZE:SIZE:SIZE. A subprocedure may use different names for its inputs from those
r given in the original procedure, as long as the total number of inputs does not
 change.

?TO 6FLAG :SIZE
 >REPEAT 6 [FLAGR :SIZE RT 60]
 >END
 6FLAG defined
 ?6FLAG

?TO SPINFLAG :SIZE
 >6FLAG :SIZE
 >6FLAG :SIZE - 20
 >END
 SPINFLAG defined
 ?SPINFLAG

SNAGSSNAGSSNAGSSNAGS
1 You forgot the space before the :::: (colon)
2 You typed a space between the :::: and SIDESIDESIDESIDE
3 You typed :::: in front of a number
4 You typed :SIE:SIE:SIE:SIE or something like that
5 You forgot the ::::
6 You inserted an extra instruction
7 You accidentally erased an instruction

Chapter 13Chapter 13Chapter 13Chapter 13
Numbers and arithmeticNumbers and arithmeticNumbers and arithmeticNumbers and arithmetic
INFIX AND PREFIXINFIX AND PREFIXINFIX AND PREFIXINFIX AND PREFIX
As we have seen in some of the examples, Sinclair Logo can carry
out arithmetic operations. To do this, you use the computer symbols for the
operations:

//// division
 **** multiplication
 ---- subtraction
 ++++ addition

These signs are written between the numbers, and are known as
infix operations.
 If there is more than one operation, division is performed before
multiplication, both are performed before subtraction, and addition is the last
operation to be performed.

?PR 5 + 3
 8

?PR 4 * 23
 92

?PR 345 - 32
 313
 ?PR 25/5
 5
Note:

?PR 3+4*2
 11
but

?PR (3 + 4) * 2
 14

Parentheses ()()()() tell Logo to perform what is within them first.
 You can also write the name of the desired operation (DIV, PRODUCT,DIV, PRODUCT,DIV, PRODUCT,DIV, PRODUCT,
SUMSUMSUMSUM) followed by the numbers to be figured. There is no prefix operation
name for subtraction.

?PR SUM 3 4
 7

?PR DIV 12 6
 2

?PR PRODUCT 4 4
 16

SINCLAIR LOGO NUMBERSSINCLAIR LOGO NUMBERSSINCLAIR LOGO NUMBERSSINCLAIR LOGO NUMBERS
Logo can deal with both integers and fractions.

PR 25/6
 4.1666667
 ?PR 4 * 2.3
 9.2
 ?PR 19 - -2.5
 21.5

Note the importance of the spaces in the expression 19 - - 2.5.
 For more discussion about arithmetic in Logo, consult the Sinclair Logo
Programming Reference Manual.

Chapter 14Chapter 14Chapter 14Chapter 14
The turtle's fielThe turtle's fielThe turtle's fielThe turtle's fieldddd
INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION

 The turtle has a position and a heading.
 Its heading is given in degrees like a compass, where 0°, or north, is facing
 straight up.
 90° is directly east, 180° is directly south and 270° directly west. We
 might think of the screen as follows:

When Logo starts, the turtle's heading is 0. After CSCSCSCS, the heading is 0. You
can find out the turtle's heading whenever you want.

?CS
 RT 90

?PR HEADING
 90

HEADINGHEADINGHEADINGHEADING outputs the turtle's direction.
 HEADING is a primitive procedure, but it is different from PRINTPRINTPRINTPRINT or
FORWARDFORWARDFORWARDFORWARD or the other commands we have seen.
HEADINGHEADINGHEADINGHEADING is not a command; it is an operation. It does not cause something
 to happen; rather, it outputs something which can be used as an input.
| If you don't tell Logo what to do with an operation, you will get a Logo
 message.

?PCS RT 90
 ?HEADING
 You don't say what to do with 90

The turtle's position is described by two numbers, which indicate how far the
turtle is from the centre of its field. When Logo starts, or after CSCSCSCS, the turtle's
position is [0 0].[0 0].[0 0].[0 0].
 The first number indicates the turtle's location along the horizontal or

x-axis. If the turtle is west of centre, the number is negative. The second
 number indicates the turtle's location along the vertical or y-axis. If the turtle
 is south of centre, the number is negative.
 The turtle screen can be represented by a grid divided into
 coordinates. The x-coordinate runs along the horizontal and the y-coordinate
 runs along the vertical. The turtle at the centre has both XCORXCORXCORXCOR and YCORYCORYCORYCOR
equal to 0000. The screen dimensions, measured in turtle steps, are:

If you type:

?CS LT 90 FD 30
 ?PR POS

you will get:

-30 0

If you now type:

?BK 60
 ?PR POS

you will get:

30 0

You can also find either coordinate by itself.

?PR XCOR
 30

?PR YCOR
 0

SETPOSSETPOSSETPOSSETPOS, which stands for SET POSSET POSSET POSSET POSition, is a command that sets the turtle at a
specific position on the screen. SETPOSSETPOSSETPOSSETPOS is different from FORWARDFORWARDFORWARDFORWARD or BACKBACKBACKBACK
in that the end result does not depend on the turtle's initial position. SETPOSSETPOSSETPOSSETPOS
does not change the turtle's HEADINGHEADINGHEADINGHEADING. For example,

?SETPOS [50 – 52]

Leave a space before the -52, but do not leave a space between the - and
 the 52. If you do, Logo will think you are giving it three inputs, 50, - and 52.
 It will therefore send a Logo message:

SETPOS doesn't like - as input

WRAP, FENCE and WINDOWWRAP, FENCE and WINDOWWRAP, FENCE and WINDOWWRAP, FENCE and WINDOW
The turtle starts out being able to WRAPWRAPWRAPWRAP; it can walk off one edge of the

 screen and reappear on the opposite edge along the same horizontal or
 vertical line. If it's facing at an angle, it will draw stripes as it moves. It does
 not change direction.
 For example:

?CS
 ?FD 500
 ?PR POS
 0 – 28

Notice that the turtle is not 500 steps from the centre.
 By typing FENCEFENCEFENCEFENCE, you can set up the screen boundaries so that the turtle
 cannot move off the screen.
 Type:

?FENCE
 PCS
 ?FD 500

r Logo sends a message:

Turtle out of bounds

The turtle screen will act this way until you type WRAPWRAPWRAPWRAP or WINDOWWINDOWWINDOWWINDOW.

WINDOWWINDOWWINDOWWINDOW is a command which allows the turtle to move off the screen
without wrapping. Thus the turtle may be invisible to you, but still carry out
your orders. When you are in WINDOWWINDOWWINDOWWINDOW mode, you may move the turtle up
to +32767 or -32768 steps.
 If you ask Logo to go more than that, you will receive a Logo message.
For example:

?CS
 ?FD 50000
 FD doesn't Like 50000 as input

USING POSITION TO DRAW USING POSITION TO DRAW USING POSITION TO DRAW USING POSITION TO DRAW
Now that we have learned about SETPOSSETPOSSETPOSSETPOS and variables, we can add some

 features to our GARDENGARDENGARDENGARDEN.

1 Let's start by putting windows on our HOUSE.HOUSE.HOUSE.HOUSE.
Note: You cannot name a procedure WINDOW, because, as we have just

seen, there is already a primitive of that name.

?ED "HOUSE
 TO HOUSE
 SQUARE 45 FD 45 TRIANGLE
 PU SETPOS [10 26] PD

SETH 0
 SQUARE 10
 PU SETPOS [25 26] PD
 SQUARE 10
 END
 HOUSE defined

Try it:

?HOUSE

2 We can also draw a little person who lives in the GARDENGARDENGARDENGARDEN. Let's make a
stick figure.

?TO V :SIZE
 >LT 50
 >DRAW :SIZE
 >RT 100
 >DRAW :SIZE
 >LT 50
 >END
 V defined

?TO DRAW :SIZE
 >FD :SIZE
 >BK :SIZE
 >END
 DRAW defined

?TO PERSON :SIZE
 >SETH 180
 >V :SIZE
 >RT 180
 >FD :SIZE
 >V :SIZE
 >FD :SIZE /2
 >END
 PERSON defined

Try it:

?PERSON 10

3 Let's now add these features to our GARDENGARDENGARDENGARDEN
?ED "GARDEN

 TO GARDEN
 WINDOW
 HOUSE
 PU SETPOS [-50 15] SETH 0 PD
 TREES
 PU SETPOS [-98 –45] PD
 LAWN
 PU SETPOS [90 60] SETH 0 PD
 SUN
 PU SETPOS [20 0] PD
 PERSON 7
 PR [WELCOME TO MY GARDEN]
 END

Try it:

?GARDEN

Chapter 15Chapter 15Chapter 15Chapter 15
Assigning values to variables: theAssigning values to variables: theAssigning values to variables: theAssigning values to variables: the
procedure MAKEprocedure MAKEprocedure MAKEprocedure MAKE

INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION
In Logo, MAKEMAKEMAKEMAKE allows you to assign a value to a word or list. (Remember that
a number is considered as a word in Logo.) In Chapter 12 we said that
variables can be thought of as containers which contain Logo object(s) - a
word or a list. Within the container we find the value that was given to the
object.

?MAKE "AGE 8
 ?PR :AGE
 8

the : ::: tells Logo to look for the value assigned to the name AGEAGEAGEAGE.

MAKEMAKEMAKEMAKE gives the value 8 to the name AGE.AGE.AGE.AGE.
 MAKEMAKEMAKEMAKE needs two inputs. The first is the name of the variable; the second
is its value.

USING MAKE TO DRAWUSING MAKE TO DRAWUSING MAKE TO DRAWUSING MAKE TO DRAW
There is an easy way to draw a right angled triangle, provided that you know
the lengths of the two sides forming the angle. Using the command MAKEMAKEMAKEMAKE,
we can record the starting position of the turtle:

?CS
 ?MAKE "START POS
 ?PR :START
 0 0

We can now ask the turtle to draw the two sides:

?FD 33
 ?RT 90
 ?FD 42
 ?SETPOS :START

We instruct Logo to move the turtle to the position indicated by the value of
STARTSTARTSTARTSTART.

Since the pen is down, Logo draws a line.
 We can write a procedure for this:

?TO TRE :SIDE1 :SIDE2
 >MAKE "START POS
 >FD :SIDE1
 >RT 90
 >FD :SIDE2
 >SETPOS :START
 >END
 TRE defined

Try:

?CS
 TRE 40 50
 ?SETH 0
 ?TRE 75 20

Chapter 16Chapter 16Chapter 16Chapter 16
More circles and arcsMore circles and arcsMore circles and arcsMore circles and arcs
CIRCLESCIRCLESCIRCLESCIRCLES
Let's write a procedure for experimenting with circles of different sizes:

?TO CIRCLE :STEP
 >REPEAT 36 [FD :STEP RT 10]
 >END
 CIRCLE defined

Now try it with various inputs:

?CIRCLE 1

?CIRCLE 5

?CIRCLE 10

Notice that the circle's size changes in proportion to its input. This is not
 surprising because each circle has the same number of FORWARDFORWARDFORWARDFORWARDs in it. The
 FORWARDFORWARDFORWARDFORWARD distance determines the length of the circumference.

THE RADIUSTHE RADIUSTHE RADIUSTHE RADIUS
Sometimes it is more convenient to choose the size of a circle by stating its
radius - the distance from the centre to any point on the circumference. With
the CIRCLECIRCLECIRCLECIRCLE procedure we need to calculate the radius of each circle. Why not
let Logo calculate it? To do this, we'll write another procedure which uses
CIRCLECIRCLECIRCLECIRCLE, and call it CIRCRADCIRCRADCIRCRADCIRCRAD.

?TO CIRCRAD :RADIUS
 >CIRCLE 2 * 3.14 * :RADIUS/36
 >END
 CIRCRAD defined

Note: 2 * 3.14 * : RADIUS2 * 3.14 * : RADIUS2 * 3.14 * : RADIUS2 * 3.14 * : RADIUS represents the circumference of a circle (2 π r). The
circumference has 36 FORWARDS36 FORWARDS36 FORWARDS36 FORWARDS. Thus we divide by 36 to get the step size.
 Now try:

?CIRCRAD 30

?RT 90 FD 30

?FD 30 HT

Here are some drawing using circles. See if you can write programs for
them!

FLOWER

TARGET

FACE

ARCSARCSARCSARCS
Many projects require only arcs (pieces of circles). One way to draw an arc of
a circle is to run the CIRCLECIRCLECIRCLECIRCLE procedure and quickly press the CAPSCAPSCAPSCAPS
BREAK/SPACEBREAK/SPACEBREAK/SPACEBREAK/SPACE keys to stop the turtle before it finishes drawing.
 Of course, this method doesn't allow you to control the size of your arcs
very well. The best way to control the size of an arc is to give another input to
the CIRCLECIRCLECIRCLECIRCLE procedure, which varies the number of times the small steps and
turns are repeated.
 Let's change the name of the procedure to ARCARCARCARC.

?ED "CIRCLE
 TO CIRCLE :STEP
 REPEAT 36 [FD :STEP RT 10]
 END

Edit this procedure to:

TO ARC :STEP :TIMES
 REPEAT :TIMES [FD :STEP RT 10]
 END
 ARC defined

Now try:

?ARC 10 36

?CS
 ?ARE 10 18

?CS
 ?ARC 10 9

We can use the number of degrees that we want in our arc as the input and
let Logo calculate how many times to repeat.

?ED "ARC
 TO ARC :STEP :DEGREES
 REPEAT :DEGREES/10 [FD :STEP RT 10]
 ARC defined

USING ARCSUSING ARCSUSING ARCSUSING ARCS
?ACR 6 90

?RT 90

?ARC 6 90

?HT

A petal!

Now try using some negative number.

Chapter 17Chapter 17Chapter 17Chapter 17
Exploring polygons and spiralsExploring polygons and spiralsExploring polygons and spiralsExploring polygons and spirals
POLYGONSPOLYGONSPOLYGONSPOLYGONS
Just as you can vary the number of steps the turtle takes, you can also vary
how much it turns. In fact, you can get beautiful and surprising designs by
varying these two components of the turtle's state.
 Let's look at some examples:

?TO POLY :STEP :ANGLE
 >FD :STEP
 >RT :ANGLE
 >POLY :STEP :ANGLE
 >END
 POLY defined
Try:
 ?POLY 30 120

To stop the triangle, press the CAPS BREAK/SPACECAPS BREAK/SPACECAPS BREAK/SPACECAPS BREAK/SPACE.
 What has happened here? After turning right the number of degrees in
the angle (in this example 120), the procedure calls itself as an instruction,
and Logo runs the entire procedure again and again and again, until you tell
it to stop.
 A procedure which calls itself as a subprocedure is known as a recursive
procedure.
 There is a story which is often told to explain recursivity. A fairy
godmother offers you two wishes. Your second wish is always to have two
more wishes!
 Try these POLYPOLYPOLYPOLY shapes, or use inputs of your own. It's a good idea to CSCSCSCS
 between each drawing. Remember to press CAPS BREAK/SPACECAPS BREAK/SPACECAPS BREAK/SPACECAPS BREAK/SPACE when you
want the procedure to stop.

?POLY 30 90

?POLY 30 60

?POLY 30 144

?POLY 30 40

?POLY 30 160

Let's now make a polygon which turns and changes its colour!

?TO POLYT :N :SIDE :ROT
 >POLY1 :N :SIDE
 >RT :ROT
 >SETPC PC+1
 >POLYT :N :SIDE :ROT
 >END
 POLYT defined

?TO POLY1 :N :ANGLE
 >REPEAT :N [FD :SIDE RT 360/:N]
 >END

POLY1 defined
 ?POLYT 6 40 30

Note that when the pen has the same colour as the background, the polygon
is invisible.
 To stop POLYTPOLYTPOLYTPOLYT, press CAPS BREAK/SPACECAPS BREAK/SPACECAPS BREAK/SPACECAPS BREAK/SPACE.

SPIRALSSPIRALSSPIRALSSPIRALS
The POLYPOLYPOLYPOLY procedure draws closed figures. The turtle moves forward and
rotates so that it eventually gets back to where it started. (However, if the
turtle turns 0 or 360° - or a multiple of 360° - on each round, it walks in a
straight line.)
 To draw a spiral, the turtle must not return to where it started; instead, it
should increase its forward step on each round so that it gets further and
further away from its starting point.
 We can make it do this by adding a little bit to :STEP:STEP:STEP:STEP each time POLYPOLYPOLYPOLY
instructs itself to start the procedure again, ie, on the recursion instruction.

?TO SPI :STEP :ANGLE
 >FD :STEP
 >RT :ANGLE
 >SPI :STEP+6 :ANGLE
 >END
 SPI de-fined
Now try SPI!SPI!SPI!SPI!

?HT
 ?SETSCRUNCH [50 50]
 ?SPI 5 90

?SPI 5 120

?SPI 5 60

Remember, type CAPS BREAK/SPACECAPS BREAK/SPACECAPS BREAK/SPACECAPS BREAK/SPACE to stop the SPISPISPISPI procedure.

?SPI 5 144

?SPI 5 160

?SPI 5 160

Let's now modify SPISPISPISPI, giving it a third input called INCINCINCINCrement. Then we can
change how much the turtle's step increases by choosing different numbers
for the third input.

?ED "SPI
 TO SPI :STEP :ANGLE :INC
 FD :STEP
 RT :ANGLE
 SPI :STEP + :INC :ANGLE :INC
 END
 SPI defined
Now try:

?SETSCRUNCH [100 100]
?SPI 5 75 1

?SPI 5 75 2

Try stopping the turtle at different places. Make up your own inputs. You can
Also try:

?CS
?FENCE
?SPI 5 125 2

Press CAPS BREAK/SPACECAPS BREAK/SPACECAPS BREAK/SPACECAPS BREAK/SPACE

?CS WINDOW
?SPI 5 125 2

Press CAPS BREAK/SPACECAPS BREAK/SPACECAPS BREAK/SPACECAPS BREAK/SPACE

?CS
?WRAP
?SPI 5 125 2

Chapter 18Chapter 18Chapter 18Chapter 18
Exploring recursive proceduresExploring recursive proceduresExploring recursive proceduresExploring recursive procedures
INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION
One of the most powerful features of Logo is that you can divide a
complicated task into procedures, each of which has its own name and is
completely separate from the others. A procedure can call, or be called by,
any other procedure including itself. As we have seen, a procedure which
calls itself is known as a recursive procedure.

?TO POLY :STEP :ANGLE
 >FD :STEP
 >RT :ANGLE
 >POLY :STEP :ANGLE (this is the recursive call)

END
 POLY defined

POLYPOLYPOLYPOLY calls POLYPOLYPOLYPOLY as part of its definition.
 Recursion allows repetition of a procedure. Recursive calls may be directly
within the procedure (as in POLYPOLYPOLYPOLY), or may cross procedures, for example:

?TO GO ?TO HI
 >FD 10 >PE BK 10PD
 >HI >GO
 >END >END

GOGOGOGO calls HI HI HIHI and HIHIHIHI calls GOGOGOGO ... until you tell Logo to stop by pressing CAPSCAPSCAPSCAPS
BREAK/SPACE. BREAK/SPACE. BREAK/SPACE. BREAK/SPACE.

 Not all recursive procedures work this way; they can be made to stop. In
 fact, making up appropriate 'stop rules' is an important part of writing
 recursive procedures. We will look at some stop rules here; consult the
 Programming Reference Manual for further examples.

STOPPING RECURSIVE PROCEDU STOPPING RECURSIVE PROCEDU STOPPING RECURSIVE PROCEDU STOPPING RECURSIVE PROCEDURESRESRESRES
Let's look at some ways of stopping recursive procedures within a program.

Example 1: Stopping the SPI procedure

?TO SPI :STEP :ANGLE :INC

 >IF :STEP >150 CSTOP3
 >FD :STEP
 >RT :ANGLE
 >SPI :STEP + :INC :ANGLE :INC
 >END

In this example we have told Logo to stop if the size of the step is greater
than 150.
 In brief, the statement IF :STEP >150 [STOP]statement IF :STEP >150 [STOP]statement IF :STEP >150 [STOP]statement IF :STEP >150 [STOP] can be translated as:
 If the value of STEPSTEPSTEPSTEP is greater than 150150150150, STOPSTOPSTOPSTOP the procedure; if not,
continue executing the procedure. Now try:

SPI 5 125 10

IFIFIFIF expects its first input to be either TRUETRUETRUETRUE or FALSE.FALSE.FALSE.FALSE.

>>>> is a special kind of operation, which outputs either
TRUETRUETRUETRUE or FALSEFALSEFALSEFALSE. We call this kind of operation a predicate.
Predicates are used as the first input to IFIFIFIF; see the Programming Reference
Manual for a more detailed discussion.

Example 2: This recursive procedure introduces two new primitives: FIRSTFIRSTFIRSTFIRST
and BUTFIRSTBUTFIRSTBUTFIRSTBUTFIRST
 FIRSTFIRSTFIRSTFIRST and BUTFIRSTBUTFIRSTBUTFIRSTBUTFIRST deal with Logo objects (words and lists). FIRSTFIRSTFIRSTFIRST
instructs Logo to look for the first element of a word, or the first element of a
list. BUTFIRSTBUTFIRSTBUTFIRSTBUTFIRST instructs Logo to look for everything BUTBUTBUTBUT the first letter of a
word or list.
 There are many primitive procedures to put Logo objects together, and to
take them apart and examine them. See the section WORDS and LISTS in the
Programming Reference Manual.

?TO VERTICAL :WD
 >IF :WD = " ESTOP]
 >PR FIRST :WD
 >VERTICAL BUTFIRST :WD
 >END
 VERTICAL defined
 ?VERTICAL "NONSENSE
 N

0
N
S
E
N
S
E

What happens when we VERTICAL "NONSENSE?VERTICAL "NONSENSE?VERTICAL "NONSENSE?VERTICAL "NONSENSE?
1 he instruction IF :WD = " [STOP]IF :WD = " [STOP]IF :WD = " [STOP]IF :WD = " [STOP] tells Logo to STOPSTOPSTOPSTOP if the value of
 WDWDWDWD is the empty word (a " """ followed by a blank space).
2 f it is not, Logo goes to the second instruction, PRINT FIRST :NPRINT FIRST :NPRINT FIRST :NPRINT FIRST :N, which
 ells Logo to print the first character of :WD:WD:WD:WD.

3 The third instruction, VERTICALVERTICALVERTICALVERTICAL BUTFIRSTBUTFIRSTBUTFIRSTBUTFIRST :WD:WD:WD:WD is a recursive call, and
 ells Logo to look for the procedure VERTICAL "ONSENSEVERTICAL "ONSENSEVERTICAL "ONSENSEVERTICAL "ONSENSE which is the
 UTFIRSTUTFIRSTUTFIRSTUTFIRST of VERTICAL "NONSENSEVERTICAL "NONSENSEVERTICAL "NONSENSEVERTICAL "NONSENSE.
4 his continues until the value of :WD:WD:WD:WD is empty. The IFIFIFIF statement is then
 rue, and Logo stops.

Example 3: A recursive twist
Simple recursion is quite simple. But sometimes recursion can be quite
complex, even subtle! If you would like to see an example look at the
procedures below. If not, just skip this section.
 These two procedures appear quite similar:

?TO COUNTS :N ?TO ACCOUNT :N
 >IF :N = 0 ESTOP] >IF :N = 0 ESTOP]
 >PRINT :N >ACCOUNT :N - 1
 >COUNTS :N - 1 >PRINT :N
 >END >END
 COUNTS defined ACCOUNT defined

?COUNTS 3 ?ACCOUNT 3
 3 1

2 2
1 3

The COUNTS :NCOUNTS :NCOUNTS :NCOUNTS :N procedure instructs Logo to stop when the value of :N:N:N:N is 0,0,0,0,
otherwise print NNNN and re-execute the procedure, subtracting 1111 from the value
of N.N.N.N.

This procedure is quite straightforward and similar to the other examples
we have examined.
 The ACCOUNTACCOUNTACCOUNTACCOUNT procedure is more complicated.
1 The first instruction tells Logo to check if the value of :N:N:N:N is 0000. If yes, the
 procedure stops, If no, Logo continues to the next instruction.
2 The second instruction tells Logo to look for the procedure ACCOUNTACCOUNTACCOUNTACCOUNT
 which has an input of :N :N :N:N ----1111 (the value of NNNN minus 1111).
 But what has happened? The second instruction is a recursive call
 instructing Logo to start the procedure again. Logo cannot proceed to the
 next instruction until the IFIFIFIF statement (IF :N=0)(IF :N=0)(IF :N=0)(IF :N=0) is true. When :N = 0,:N = 0,:N = 0,:N = 0,
 Logo will no longer be able to execute the ACCOUNTACCOUNTACCOUNTACCOUNT :N:N:N:N----1111 instruction.
 It is only then that Logo passes to the next instruction.
3 PRINT :N.PRINT :N.PRINT :N.PRINT :N.
 But Logo now has several NNNN values to print, which are all waiting in Logo's
 memory. Logo prints the number of the last instruction it carried out.
 Thus, we see a 1111 on the screen.

4 The next instruction is ENDENDENDEND. Logo cannot yet end because it still has some
 values in its memory. So, it passes back one procedure. This was
 CCOUNTCCOUNTCCOUNTCCOUNT with the value of 2222. Thus, it prints a 2222 on the screen. It does
 his until there are no more unfinished instructions left in the procedure.

Thus, in placing a recursive call in the midst of a procedure, rather than at the
end, there may be several 'results' existing at the same time. In this case, the
last procedure called is the first one to stop.

Chapter 19Chapter 19Chapter 19Chapter 19
A game projectA game projectA game projectA game project
CREATING A GAMECREATING A GAMECREATING A GAMECREATING A GAME
Let's make up a game. A target and a turtle appear somewhere on the
screen. The player tries to get the turtle into the target with the smallest
number of moves.
 For our first version, we will use regular Logo commands such as LT 45LT 45LT 45LT 45 or
FD 80FD 80FD 80FD 80. Later, we will refine the game by assigning Spectrum keys to direct
the turtle. Developing the game in stages illustrates the kind of 'project
management' to which Logo is well suited.
 First, we need to set up a target; then we need to set up the turtle. We
can write one procedure that will perform both tasks. An example of a SETUPSETUPSETUPSETUP
procedure is printed below. SETUPSETUPSETUPSETUP sets the turtle up in a random position on
the screen. It leaves the turtle heading in the same direction as it was at the
start of SETUPSETUPSETUPSETUP.

?TO SETUP
 >PU
 >RT RANDOM 360
 >FD RANDOM 85
 >SETHEADING 0
 >PD
 >END
 SETUP defined

The Logo operation RANDOMRANDOMRANDOMRANDOM returns a number which Logo chooses
randomly between 0 and one less than the number given as RANDOMRANDOMRANDOMRANDOM'S
input.
 In SESESESETUPTUPTUPTUP, for example, the turtle turns some angle which can be as small
as 0 or as large as 359. The actual number is computed each time
RANDOM is used. The input to FD is also a random number. Here the
number can be no larger than 84. Notice that SETUPSETUPSETUPSETUP leaves the turtle facing
north.
 SETUPSETUPSETUPSETUP can be used to set up the turtle as well as the target. It's a good
idea to put the turtle back at the centre first.
 The following procedure, SETGAMESETGAMESETGAMESETGAME, sets up the game.

>TO SETGAME
 >CS
 >SETUP
 >TARGET

>PR [TRY TO HIT THE TARGET]
 >SETPOS [O 0]
 >SETUP
 >END
 SETGAME defined

?TO TARGET
 >BOXR 10
 >END
 TARGET defined

?TO BOXR :SIDE
 >REPEAT 4 [FD :SIDE RT 90]
 >END
 BOXR defined

Try SETGAMESETGAMESETGAMESETGAME a few times. It's hard at first. For example:

?SETGAME
 ?RT 45
 ?FD 100

A miss!

MAKING A KEY INTO A GAME BUTTON MAKING A KEY INTO A GAME BUTTON MAKING A KEY INTO A GAME BUTTON MAKING A KEY INTO A GAME BUTTON
You can write many kinds of interactive programs. You can ask Logo

 questions and receive answers in words or sentences: see Chapter 9 of the
Programming Reference Manual, Interaction with the Machine, for further
 examples and explanations.
 Sometimes you may want to trigger Logo into action by a touch of a key.
This requires the operation READCHARREADCHARREADCHARREADCHAR or RCRCRCRC. Type:

?PR RC

Logo waits for a key to be pressed. Type the letter AAAA. RCRCRCRC receives the

 Character AAAA and passes it to the PRINTPRINTPRINTPRINT command. The PRINTPRINTPRINTPRINT command them
Puts an AAAA on the screen.

?PR RC
A

Logo does not wait for you to do anything else. It acts immediately Try RCRCRCRC a
few more times. Note that if you type RCRCRCRC (followed by ENTER) ,and then
type in a character (for example TTTT),Logo sends a message :

?RC
 Now type T
 You don't say what to do with T

RCRCRCRC is an operation, like HEADINGHEADINGHEADINGHEADING or POSITIONPOSITIONPOSITIONPOSITION. It is used as an input to
 another command or operation. We could name RC's output using MAKEMAKEMAKEMAKE,
 for example:

?MAKE "KEY RC

Now type the character zzzz. :KEY:KEY:KEY:KEY will be the character zzzz. To verify, type:

?PRINT :KEY

 Z

We can use this idea of giving things names so that we can talk about them.
 Imagine we have a procedure called PLAYPLAYPLAYPLAY.

?TO PLAY
 >MAKE "ANSWER RC
 >IF ANSWER = "F [FD 10]
 >IF ANSWER = "R [RT 15]
 >IF ANSWER = "L [LT 15]
 >PLAY
 >END
 PLAY defined

FFFF makes the turtle move forward 10 steps.
 RRRR makes the turtle turn right 15°.
 LLLL makes the turtle turn left 15°.

In PLAY, the value of :ANSWER:ANSWER:ANSWER:ANSWER is what RCRCRCRC outputs. PLAYPLAYPLAYPLAY then checks

 :ANSWER:ANSWER:ANSWER:ANSWER using the Logo primitive, IF. IFIF. IFIF. IFIF. IF requires two inputs. The first input
 is either TRUETRUETRUETRUE or FALSEFALSEFALSEFALSE. The second is a list of instructions to be carried out
 when the first input is TRUETRUETRUETRUE.
 Notice that PLAYPLAYPLAYPLAY is recursive; that is, the last line of the procedure PLAYPLAYPLAYPLAY
 calls PLAY. PLAYPLAY. PLAYPLAY. PLAYPLAY. PLAY does not stop unless it has a bug or you press CAPSCAPSCAPSCAPS
 BREAK/SPACEBREAK/SPACEBREAK/SPACEBREAK/SPACE. Try it.

EXPANDING THE GAME PROJECTEXPANDING THE GAME PROJECTEXPANDING THE GAME PROJECTEXPANDING THE GAME PROJECT
In this section we build a better target game out of SETGAMESETGAMESETGAMESETGAME and PLAYPLAYPLAYPLAY.

 Some of the techniques used in this section are new. We can write a
 procedure, GAMEGAMEGAMEGAME, which uses SETGAMESETGAMESETGAMESETGAME and then PLAY:PLAY:PLAY:PLAY:

?TO GAME
 >SETGAME
 >PLAY
 >END
 GAME defined

Try GAMEGAMEGAMEGAME.
 Perhaps we should raise the turtle's pen. We can ask GAME to print some
instructions:

?TO GAME
 >RULES
 >SETGAME
 >PU
 >PLAY
 >END
 GAME defined

?TO RULES
 >PR [HIT THE TARGET WITH THE TURTLE]
 >WAIT 100
 >PR [TYPE R OR L TO TURN AND F TO ADVANCE]
 >WAIT 100
 >END
 RULES defined

Try GAMEGAMEGAMEGAME now.
 This is much better, but there is still room for improvement. The game
plays too slowly; let's make it more challenging by giving the player only one
chance to land on the target. The player can turn the turtle many times, but
will have only one chance to tell it how far to go forward.
 Here is the plan: after Logo has set up the scene for the game, we want it
to let you play. Once you've had your try, you can see if you've landed in the
target. Logo should leave the screen unchanged for a little while and then
start the game again with a brand new target and position.
 We use a 'top - down' approach to plan this game. That means we
plunge in and write the overall structure of the game before we know how
we are going to write all the details.

?TO GAME
 >RULES
 >SETGAME (This sets up each game)

>PU
 >PLAY
 >WAIT 100 (Logo pauses before restarting)
 >GAME
 >END
 GAME defined

We can now edit the procedure PLAYPLAYPLAYPLAY to give you only one chance to move
the turtle forward into the target. The point of the game is to judge the
distance.
 When you press the TTTT key (TTTT for try), you get your only chance to land in
the target.

?TO PLAY
 >MAKE "ANSWER RC
 >IF ANSWER = "R [RT 15]
 >IF ANSWER = "L [LT 15]
 >IF ANSWER = "T [TRYLANDING ST
 OP]
 >PLAY
 >END
 PLAY defined

Now edit the RULESRULESRULESRULES and change FFFF to TTTT.

?ED "RULES
 TO RULES
 PR [HIT THE TARGET WITH THE TURTLE]
 WAIT 100
 PR [TYPE R OR L TO TURN AND T
 TO TRY LANDING]
 WAIT 100
 END

We've used the 'top-down' approach again; we've asked PLAYPLAYPLAYPLAY to call a
procedure name TRYLANDINGTRYLANDINGTRYLANDINGTRYLANDING which we haven't yet defined.
 Let's define it now.

?TO TRYLANDING
 >PR [HOW FAR DO YOU WANT TO MO
 VE FORWARD?]
 >FD READWORD
 >END
 TRYLANDING defined

?TO READWORD
 >OUTPUT FIRST READLIST
 >END
 READWORD defined

READWORDREADWORDREADWORDREADWORD functions like RCRCRCRC, except that you can type a word instead of a
 single character: it waits for you to press the ENTERENTERENTERENTER key to signal that you
 have done so.
 READWORDREADWORDREADWORDREADWORD is an operation which returns the a word you typed.
 READLIST (RL) is a primitive procedure; it too is an operation, but it returns a
 list. So READWORDREADWORDREADWORDREADWORD uses READLISTREADLISTREADLISTREADLIST, but only takes the first word you type
 Operations return a word or a list. The command OUTPUTOUTPUTOUTPUTOUTPUT or OPOPOPOP outputs
 something, and stops the procedure at that point.
 Now we have written the whole game. To try it, type:

?GAME

Remember, you can give the commands RRRR and LLLL to turn the turtle and TTTT to
try landing on the target. After you type TTTT, Logo will wait for you to type a
number and then ENTERENTERENTERENTER.
 You may try adding to this program yourself!

TAILPIECETAILPIECETAILPIECETAILPIECE
We have now come to the end of our introduction to Logo, but we hope you
will explore other turtle projects on your own. The Programming Reference
Manual describes many other features of Logo which you will want to try as
you become more familiar with the language.

Index

� 3 D
� 3 define 11
� 4 delete 3
� 4 DIV 49
" 13 division 49
* 49
+ 49 E
- 49 E Mode 4
/ 49 ED, EDIT 17
: 20 edit 11
[] 13 empty word 72
() 49 END 11
> 11 ENTER KEY 3
? 11 ER, ERASE 36

ERPS, Erase ProcedureS 36
A execute 3
addition 49
arcs 61 F
arithmetic 49 FENCE 53

field 5
B files 23
BF, BUTFIRST 72 FIRST 72
BG, BACKGROUND 28 FD, FORWARD 6
BK, BACK 6 fullscreen editor 17
brackets 13
BREAK/SPACE key 3 G
bug 7 game 75

grid 52
C
C MODE 3 H
CAPS 0 15 HEADING 51
CAPS/ BREAK/SPACE 15 heading 5
CAPS SHIFT 3 HT, HIDETURTLE 19
circle 44
colour codes 27 I
commands 5 INCrement 68
coordinates 52 IF 72
COPYSCREEN 37 input 6
CS, CLEARSCREEN 7 Infix operation 49
CT, CLEARTEXT 14
cursor 2

K R
keyboard 3 RANDOM 75

RC, READCHAR 76
L RL, READList 80
L MODE 3 READWORD 80
LT, LEFT 6 recursion 65
LOAD 23 recursive procedure 71

REPEAT 14
M RT, RIGHT 6
MAKE 57
multiplication 49 S

SAVE 23
N SETBG, SETBackGround 27
numbers 49 SETBR, SETBORDER 27

SETH, SETHEADING 75
O SETPC, SETPENCOLOUR 27
operation 51 SETPOS, SETPOSition 52
OP, OUTPUT 80 SETCR, SETCRUNCH 19

SETUP 75
P SNAGS 1
PC, PENCOLOUR 27 spirals 67
PD, PENDOWN 25 ST, SHOWTURTLE 5
PE, PENERASE 26 state 5
PO, PrintOut 36 state, turtle’s 5
polygons 65 STOP 71
POPS, Print Out ProcedureS 35 SUBTRACTION 49
POS, POSition 52 SUM 49
POTS, Print Out Titles 35 SYS P 14
predicates 72 SYS, SYMBOL SHIFT 3
prefix operation 49 SYS U 13
PR, PRINT 13 SYS Y 13
primitive procedures 1
PRINTOFF 37 T
PRINTON 36 theorem 43
procedure 1 TO 10
PRODUCT 49 top level 2
prompt 2 TS, TEXTSCREEN 13
PU, PENUP 25 turtle 5
PX, PENREVRSE 26

V
Q varibles 45
quote mark 13

W
WAIT 28
welcome message 2
WINDOW 53
workplace 23
WRAP 53
X
XCOR 52
Y
YCOR 52

