SUPERCODE

SPECTRUM
MACHINE CODE TOOL KIT

USER MANUAL

t:i':l's_of‘ljwar“e

SUPERCODE
THE ULTIMATE SPECTRUM
TOOLKIT

THE MANUAL

CONTENTS
SIVEEORIMICTIONY ovomunensbvnvinmess i s s aassseniins |
Using Supercode AT AT Sl 2
Table of AAAressescccecieeeeeeeeeiciceeceeeeesee e 4
Detail of Routines 6

by F.A. Vachha and V.B. Rumsey) 1983

Published by: CP SOFTWARE,
17 Orchard Lane, Prestwood, Great Missenden, Bucks.
HP16 ONN, England.

The material in this manual and on the tape Supercode, or any part thereof, shall
not be copied for use by any other person or organisation, neither shall it be
loaned nor hired, without prior permission in writing from the Publisher. Where
any part of Supercode is used commercially or otherwise a prominent credit of
the use must be given to C.P. Software. While every effort has been made in the
production of the program and manual the Publisher undertakes no responsibility
for errors nor liability for damage arising from their use.

1. INTRODUCTION - 5
Supercode is a toolkit program the like of which has not been
seen before. It consists of ONE HUNDRED- machine code
routines, accessed by a state-of-the-art BASIC program (48K
only). The routines are compact, and almost all are relocatable.
They can be called from BASIC or machine code, either from
within your program or by direct commands.

The routines can be broadly classified under two headings —
utilities and special effects.

a) Utilities give your programming far more flexibility than
you would have imagined possible—they begin where the
Spectrum ROM left off. These routines include 2 types of re-
number (the larger one being able to handle GOTOs,
GOSUBs, SAVE A$ LINE NN, RESTORES, LISTs, LLISTS, etc,
and highlight calculated arguments), a pair of superb ON
ERROR GOTO and ON BREAK GOTO (to make your prog-
rams breakproof/ crashproof), Block Moves and Deletes,
Line Moves and Deletes, a Tape—Header Reader, a selelc-
tion of program-compacting routines (REMkill, Line Con-
tract, Number— VAL String Contract), Variables Search/
List, Character Search and Replace, a number of Scrambling
Routines, an ultrafast random number generator (20 times
faster than that in ROM) diagnostic routines etc.

b) Special Effects—you name it, it's here. Every conceiva-
ble scroll, in high or low resolution, up, down, left, right and
diagonal, with or without attributes, the whole screen or part
of it, with selectable wrap-around/scroll-off/ripple/ shutter
controls, user-definable windows etc. It’s really incredible!
Also, instant changes of INK, PAPER, FLASH, BRIGHT: in-
stant filling, saving, exchanging, inverting and overprinting
of screens, “impossible” border effects en masse, four types
of sound generator (you can sirmhulate whistles, horns, bells
etc.), a screen interrogator (very useful in finding what is
where on the screen, for collisions in your own arcade
games) and much more.

Any of these routines incorporated in your own program could make
you an arcade-game programmer overnight, with the colossal speed
of machine code available at your command ... Yes, SUPERCODE '

could repay your investment hundreds of times over.

Clearly, Supercode is a toolkit in a class of its own. It has three times
as many routines as any of it's current competitors, and incorporates
many features never before available to home micro users.

Now follows a summary of the BASIC program'’s features. Note that
the program is not present on the 16K edition of Supercode due to re-
strictions on space. The program is not essential to the operation of the
routines: 16K owners will find sufficient details about the routines from
the listing which appears further on. 48K users may wish to skip the
program and load the code directly using LOAD""CODE.

- The program acts just like a book—it has an index of routines, and

- numbered pages. Each page contains all the necessary details about
one routine—its name, starting address in memory, length in bytes,
function/usage, how to call it (usually, but not always, with a RAN-
DOMIZE USR command) and Save it, and in many cases a number of
optional POKEs to tailor the routine for your specific purpose, say in
defining the length, width and position of a screen window you want
scrolled, and the attribute value you wish to be inserted. Hence, for 48K
users, there is no direct need to consult this booklet at all.

A menu of commands is available at each page. Firstly, you can actu-
ally have a demonstration of the routine working, (great fun to watch,)
fully under software control. This can be repeated any number of times.
Further, you can either return to that page or step to the next page in
numerical sequence or move toa specified page ormovetothe Index—
each option available at the touch of a key. Lastly, you can opt to SAVE,
and automatically VERIFY, the routine on tape for use in your own prog-
rams, again fully under software control. The program is error-trapped,
using its own ON-ERROR-GOTO routine, and is incredibly user

" friendly—it will give you hours of pleasure.

SUPERCODE is in itself a matchless compendium of Spectrum
routines; but when you follow the ‘tailoring’ suggestions this compen-
dium will turn into a library, with billions of different routines.

We hope that Supercode gives you as much satisfaction to use as it
did for us to prepare. Happy programming!

'II. USING SUPERCODE
The 16K and 48K versions are both recorded on each side of the
cassette:
Side 1: 16K version, 48K version
- . Side 2: 48K version, 16K version
1. LOADING To load SUPERCODE,
48K Version : LOAD™

16K Version : CLEAR 24572 : LOAD"CODE

a). In the 48K version, the routines are stored starting at 57344
(E00Ohex) and ending just below P-RAMT. Inthe 16K version,
they are stored from 24576 (or 6000hex), exactly 32768 bytes
lower than in the 48K version, to P-RAMT. In order to protect
these routines from the BASIC operating system, do the fol-
lowing before loading the code into the Spectrum.

(16K version) CLEAR 24572
(48K version) CLEAR 57340

Note that if you have loaded the 48K version of the code after
the BASIC accessing program, the latter will automatically
CLEAR 57340 for you.
FREE MEMORY, 16K users will notice they have under 1K of
BASIC space available when all the routines are loaded. It is
suggested that immediately after loading the code the routines
required by you for immediate use in the program are:

1. relocated (see Note 4) to the top of RAM.
. protected by CLEARING a new RAMTOP immediately
below them—
ii. SAVEA (in a block if there is more than 1 routine) from their
new position.

Now you should have sufficient space for your BASIC program.

SAVING, 48K users can save and verify routines under software
control. 16K users can save individual routines on tape using the
command SAVE “Name” CODE STARTING ADDRESS,
LENGTH. Ex: for Routine 41. SAVE “MEMORY"” CODE 31429, 14.

The BASIC access program (48K only) has the following menu
options:

I: To return to the start of the Index (which can be scrolled
using the ENTER key). Enter a routine number to access it's
page.

D: Demonstration routine, to show you what Supercode cando.
Once it has finished you are returned to the Index.

P: Printer mode: Copies the current screen to the printer, if one
is connected.

E: Exampleoption, allowing youto see the routine in operation.

X: Exit mode, allowing you then eitherto SAVE/VERIFY (option

S) or quit to BASIC (option Q).

R: Repeat option, reaccesses the page you last looked at.

C: Continue option, turns to the next page in sequence (orto the
Index if you are on routine 100).

N: Allow you to access a routine whose number is known with-
out returning to the Index. Entering a number which is out of
range returns you to the Index.

Options X, R, C, I, P and N are available each time you access a

routine. Option E is available for most routines.

a) Toreaccessthe BASIC program at any time, use GOTO 9001.
Do no use RUN, or else you will lose the colourful screen
display (stored in A$) used for demonstrations.

b) This BASIC program can be MERGEd with your program,
provided the latter program is short (about 1K) and does not
use line numbers above 8999 (use routine 60 on it first
if it does).

To free the maximum possible space for your BASIC program
the routines in their initial positions are located as high in mem-
ory as practicable. Consequently only the last 9 User Defined
Graphics (from ‘M’ to ‘U’) can be used. This is true both on 16K
and 48K machines when all the routines are loaded. If you need
all 21 UDG’s, relocate all routines downwards by 100 (UDG'’s
normally start at 65368/32600).

If the term ‘2 byte equivalent’ confuses you, refer to routine 61.
For example, the 2 byte equivalent of 64230 is 250 (more signific-
ant) 230 (less significant) because 250 x 256 + 230 = 64230

RELOCATING ROUTINES; an important feature of the
routines is their relocatability. If for some reason (probably
program space for 16K users) you do not wish a routine to stay
at its present position in RAM, it is very easy to shift it. This is
how it is done:

- Ex: The routine 11, LORES LOW2/3 SCR-LEFT (low resolution,

lower 2/3 of screen, scroll left), starts at 64400 and is 25 bytes long
(and hence ends at 64424). To tailor the routine POKE 64416 with
either 119 (for Wrap Around) or 54 (for Scroll off). '

Let us say you wanted this routine to reside at memory address

49152. That would involve shifting all the bytes downwards i
memory, by 64400 - 49152=15248 bytes.

This is done by the direct BASIC command. FOR X=64400 to
64400+ (25-1): POKE X-15248, PEEK X: NEXT X The routine is
now relocated. The address of the ‘tailoring’ POKE has similarly

moved downwards in memory, from 64416 to 64416-
15248=49168.

So the relocated routine starts at 49152, is 25 bytes long and thé
new address for POKEing is 49168.

The only case when this method may fail is when the routine is
relocated to a region which overlaps the old one. If it does, you

must proceed as follows:

1. If the New starting address is lower than the old one (as it
was in the example above), the above method will work.

1. If the new address is higher than the old one, “reverse” the
order of the FOR . . . NEXT loop. By this is meant changing
“FOR X=64400 TO 64424” to
“FOR X=64424 TO 64400” STEP-1” It will now work.

ROM routines and routines indicated N/A in the address table
are not relocatable.

Svstem Variable locations have addresses in the range 23552 to
23734. Where as stated above, it is necessary to relocate addres-
ses to be POKEd wher. ocating a routine, this should not be
done when the address to be POKEd is in the range 23552 to
23134. These are system variables and no change should g
“FOR X=64400 TO 64424 to ¢

“FOR X=64424 TO 64400” STEP-1" It will now work.

System Variable locations have addresses in the range 23552 to
23134. Where as stated above, it is necessary to relocate addres-
ses to be POKEd when relocating a routine, this should not be

done when the address to be POKEd is in the range 23553 to
23734. Remember to reset RAMTOP to a suitable location, using

a CLEAR command, before loading relocated code (see instruc-
tion 10).

The BASIC program itself has been error-proofed using routine
65 (check this by pressing BREAK, entering ‘N’ when is asks
scroll? and by entering routinenumberssuch as G7 and 7G—
these giving different types of errors). To disable this routine
(65), use option X (exit) and then Q (quit). Restart using GOTO
9006, rather than 9001.

10.

The Routines can be analysed as follows:

A) Screen Scrolling: 1-23, 37-40, 47-53, 67

B) Screen Manipulation: 24-28, 30-36, 54, 70, 72, 74-76

C) Special Effects: 43-46, 69, 73, 77-19, 89

D) Program Compression: 64, 82, 90, 100

E) Program Protection: 58, 59, 65, 66, 80, 98, 99

F) Program Manipulation: 42, 57, 60, 71, 81, 83-86, 88, 94-97
G) General Utilities: 29, 41, 55, 56, 61-63, 71, 87, 91-93

RAMTOP To prevent corruption by the BASIC operating system,
RAMTOP should always be set to an address lower than the
starting address of any machine code. On the Spectrum this is
easily done using the CLEAR command.

Suppose you have a 48K Spectrum and have saved routine 12
(Lores Scroll Right). Looking at the table of addresses, you see
that the starting address is 64425. RAMTOP should be set below
this, so enter as a direct command CLEAR 64424.

Now load or write your basic program, which includes in it
somewhere the statement RANDOMIZE VSR 64425 (This will
probable be within a FOR loop e.g. FORI=1t0 32: RANDOMIZE
USR 64425 : NEXT I) Load routine 12 from tape using LOAD “”
CODE. You are now ready to go!

III. TABLE OF ADDRESSES

Starting Addresses

ROUTINE Length -
No.* Name 16KVersion ¢8KVersion Bytes
1. HiresScroll-Up 31233 64001 97
2. HiresScoll-Down 31330 64098 99
3. LoresScroll-Up 3190 3190 Rom
4. HiresScroll-Right 31443 64211 32"
5. HiresScroll-Left 31475 64243 - 32
6. LoresScroll-Left 31507 64275 23
7. LoresTop 1/3Scr-Left 31532 64300 25
8. LoresMid 1/3Scr-Left 31657 - 64325 25
9. LoresLow 1/3Scr-Left 31582 64350 25
10. LoresTop 2/3Scr-Left 31607 64375 25
11. LoresLow 2/3Scr-Left 31632 64400 25
12. LoresScroll Right 31657 64425 - 25
13. LoresTop 1/3Scr-Rght 31682 64450 25
14, LoresMid 1/3Scr-Rght 31707 64475 25
18. LoresLow 1/3Scr-Rght 31732 64500 25
16. LoresTop2/3Scr-Rght 317517 64525 25
17. LoresLow 2/3Scr-Rght 31782 64550 29
18. Ripple-Scroll Left 31807 64575 18
19. Shutter-Scroll Left 31825 64533 18
20. Ripple-ScrollRight 31843 64611 18
21. Shutter-Scroll Right 31861 64629 18
22. LoresL-DiagScroll 31507 64275 25
23. LoresR-DiagScroll 31657 64425 25
24. ScreenFill 32060 64828 30
25. ScreenStore 31976 64744 12
26. ScreenOverprint 31988 64756 28
27. ScreenExchange 32016 64784 - 28
28. Screenlnvert 32041 64809 19
29. ClearAll -0 -0 Rem
30. InkChange 32090 64858 25
31, PaperChange 32115 64883 31
32. FlashOn 32146 64914 17
33. FlashOff 32163 64931 17
34. BrightOn 32180 64948 17
35. Bright Off 32197 64965 13
36. AttributeFill 32214 64982 44

III. TABLE OF ADDRESSES (cont.)

ROUTINE

Starting Addresses Length
No. Name 16K Version 48KVersion Bytes
31, Attribute Scr-Up 32258 65026 56
38. Attribute Scr-Down 32313 65081 62
39. Attribute Scr-Left 32436 65204 52
40. Attribute Scr-Right 32375 65143 61
4]. Memory Available 31429 64197 14
42. LineRenumber 31938 64706 38
43. Uni-Note Sound-Gen 31879 64647 28
"~ 44, Dual-NoteSound-Gen 31907 64675 31
45. Uni-Beep Simulator 30232 63000 10
46. Multi-Beep Simulator 30242 63010 24 -
41. ObliqueScroll-Off 30266 63034 17
48. . All-LeftScroll 30283 63051 16
49. All-RightScroll 30359 63127 85
50. HiresNW-DiagScroll 30444 63212 128
51. Hires NE-Diag Scroll 30572 63340 128
52. Hires SE-Diag Scroll 30700 63468 130
83. Hires SW-Diag Scroll 30830 . 63598 130
54. Screen-Print 30960 63728 49
55. RandomNumber Generator 31009 = 63777 18
56. Block Memory Insert 31027 63795 11
51. BlockLineDelete 31038 63806 96
58. Chr§Swop 31134 63902 43
59. Chr$Scramble RomRoutine X
60. Super-Renumber 26526 59294 681
61. TwoByte Converter Rom Routine o
62. Dec—HexConverter 21827 60595 118
63. Hex—DecConverter 27945 60713 113
64. Remkill Condenser 27726 60494 101
65. OnErrorGoto 28058 60826 13
66. OnbreakGoto 28131 60899 12
67. Free-Scroller Rom Routine =3
68. Non-Deletable Lines Rom Routine i
69. BorderEffects N/A 60000 39
70. ScreenSearch 21271 60039 123
11. VariablesSearch/List 27454 60222 185
12. 24-Line Printing Rom Routine e

13. Star/Torus Draw Rom Routine b

74. FlashSwitch | 27394 60162 30
75. BrightSwitch 27424 60192 30
76. PaintFill N/A 89136 158
71. RecordSound N/A 65290 28
78. ReplaySound | N/A 65318 32
79. Sci-FiCharacter Set 24576 57344 768
80. ProtectProgram ' Rom Routine e
81. BlockLineCopy 28232 61000 400
82. ContractProgram 28632 61400 687
83. ExpandProgram 29319 62087 317
84. ExpandRem . 26124 58892 244
85. Append Statement 27639 60407 86
86. AnalyseProgram 29636 62404 129
87. TapeHeaderReader 29765 62533 286
88. Line Address 27207 59975 13
89. ScreenGrid 30051 62819 38
90. Monochrome Program 30175 62943 54
91. Analyse Memory 30083 62857 86
92. HexLoader 32582 65350 112
93. AwaitKeyPress 28204 60972 24
94. Upper Case Strings 26065 58833 59
95. LowerCaseStrings 26006 58774 - 89
96. UpperCaseProgram 25941 58715 59
97. 'LowerCase Program 25888 58656 89
98. Confuse Listing 25495 58263 135
99. Unconfuse Listing 25630 58398 173
100. Compress Numbers 25347 B8l15 148

Note: Routines marked N/A or Rom are not relocatable.

IV. DETAILS OF ROUTINES
Note: All routines are called by RANDOMIZE USR Starting Address,

—

o1

o el et
4RO O0ON®

"

-
-

[

—
N L

(the latter being found from the table given above) except where
stated otherwise (eg41, called by PRINT USR Starting Address)

. HIGH RESOLUTION SCROLL-UP
. HIGH RESOLUTION SCROLL-DOWN

These two routines will scroll the screen up or down one pixel,
leaving the attributes unchanged. Use repeated calls to the ad-
dress specified in the table to scroll as far as required. By com-
bining these routines with numbers 37-40, joint scrolling of attri-
butes can be done. Define a suitable box, use an attribute value
of 63 and call the attribute scroll routine once for every 8 calls of
this routine. :

. LOW RESOLUTION SCROLL-UP

This routine is in ROM so RANDOMIZE USR 3190 works with
both 16K and 48K Spectrums.
HIGH RESOLUTION SCROLL-RIGHT

. HIGH RESOLUTION SCROLL-LEFT

Used for scrolling left or right one pixel. Use as routines 1 and 2.
POKE START ADDRESS + 13, WITH 55 (SCROLL OFF), 63
(WRAPAROUND) OR & (INVERSE SCROLL)

LOW RESOLUTION SCROLL-LEFT

LOW RESOLUTION TOP 1/3 SCROLL-LEFT

LOW RESOLUTION MID 1/3 SCROLL-LEFT

LOW RESOLUTION LOW 1/3 SCROLL-LEFT

LOW RESOLUTION TOP 2/3 SCROLL-LEFT

LOW RESOLUTION LOW 2/3 SCROLL-LEFT

LOW RESOLUTION SCROLL RIGHT

~OW RESOLUTION TOP 1/3 SCROLL-RIGHT

I.OW RESOLUTION MID 1/3 SCROLL-RIGHT

. LOW RESOLUTION LOW 1/3 SCROLL-RIGHT
. LOW RESOLUTION TOP 2/3 SCROLL-RIGHT

LOW RESOLUTION LOW 2/3 SCROLL-RIGHT

These routines will Scroll the screen one character square in
cach direction, leaving the attributes unchanged. Use repeated
calls to the address specified in the table to scroll as far as re-
quired. To scroll attributes call first the routine above, and then
one of Nos. 37-40, after defining &n appropriate box and setting
the attribute value to 63.

18.
19.
20.
2l.

22.

23.

24.

25
26

21.

For a wrap-around scroll, first POKE the start address + 16 with
119. To scroll off, POKE start address + 16 with 54. (Do not POKE
other numbers), eg, for routine 17 on a 16K machine, enter
POKE 31798, 119, Then “RANDOMIZE USR 31782". The bottom
2/3willthen scroll right one character square with wrap-around.

RIPPLE-SCROLL LEFT

SHUTTER-SCROLL LEFT

RIPPLE-SCROLL RIGHT

SHUTTER-SCROLL RIGHT
These four routines are all pixel scrolls affecting the screen but
not the attributes.

LOW RESOLUTION LEFT DIAGONAL SCROLL
A combination routine. First RANDOMIZE USR START AD-
DRESS Then RANDOMIZE USR 3190

LOW RESOLUTION RIGHT DIAGONAL SCROLL
A combination routine. First RANDOMIZE USR ADDRESS Then
RANDOMIZE USR 3190

SCREEN FILL
Will fill a box on the screen with any character code.
POKE START ADDRESS + 1, WITH CHARACTER CODE"
POKE START ADDRESS + 3, WITH BOX HEIGHT
POKE START ADDRESS + 6, WITH BOX WIDTH
POKE START ADDRESS + 4, AND START ADDRESS + 7, with

the “PRINT AT” co-ordinates for the top left-hand corner of the
box.

SCREEN STORE—saves a screen in memory
SCREEN OVERPRINT—swaps a screen with a stored screen
SCREEN EXCHANGE—erases the existing screen and prints the

stored one.

28.

29.

The three related routines all use a screen stored above RAM-
TOP, using 6912 bytes. It may be necessary to CLEAR a new,
lower RAMTOP. To store a screen from X to X+6911, you must;
POKE START ADDRESS + 1, WITH X-256 * INT (X/256); and
POKE START ADDRESS + 2, WITH INT (X/256)

SCREEN INVERT | '
Will invert the colours over the whole screen (ink and paper
colours will change at each PRINT position without disturbing
the screen.)

CLEAR ALL _
This routine is in ROM, use RANDOMIZE USR ¢ with both 16K
and 48K machinesto simulate a power off. It not only does “NEW”

30.

3L

32.
33.
34.
35.

36.
37.
38.
39.
40.

41.

42.

but also clears RAMTOP to its original value, rests UDG's, etc.
INK CHANGE
Instantly changes the ink over the whole screen.
POKE START ADDRESS + 1 with the overall ink colour.
PAPER CHANGE
As for ink change, but sets paper colour instead.
FLASH ON
FLASH OFF
BRIGHT ON
BRIGHT OFF
These four routines aie called by RANDOMIZE USR START AD-
DRESS.
ATTRIBUTE FILL
ATTRIBUTE SCROLL-UP
ATTRIBUTE SCROLL-DOWN
ATTRIBUTE SCROLL-LEFT
ATTRIBUTE SCROLL-RIGHT
For each of these a box can be defined within which the attri-
butes will scroll. The POKE addresses are:-
POKE START ADDRESS + 1, NEW ATTRIBUTE VALUE
POKE START ADDRESS + 4, POKE START ADDRESS + 3 with
the print at co-ordinates of the top left hand corner of the box.
POKE START ADDRESS + 6, WITH BOX WIDTH
POKE START ADDRESS + 7, WITH BOX HEIGHT
For this, POKE START ADDRESS + 36, WITH 26. To cancel,
POKE START ADDRESS + 36, WITH @ instead.
On routine 40 wrap-around can be achieved by POKEing the
START ADDRESS + 43 with 26.
MEMORY AVAILABLE
Called by PRINT USR START ADDRESS. This prints out the free
memory available for BASIC (the area from the top of the vari-
ables area to RAMTOP).
LINE RENUMBER
A short routine for use where memory is scarce. It will not re-
number GOTOs and GO SUBs etc. The first line is to renumbered
(L) and the interval between lines (I) can be changed by POKE-
ing as follows:
POKE START ADDRESS + 5, WITH [-256 * INT(I/256)
POKE START ADDRESS + 6, WITH INT(I/256)
POKE START ADDRESS + 8, WITH L-256 * INT (L/256)
POKE START ADDRESS + 9, WITH INT(L/256)

43.

44

45.

46.

47.
48.
49,
50.
51.
52.
53.

54.

UNI-NOTE SOUND-GEN-—a programmable whistle.
POKE START ADDRESS + 1, WITH FREQUENCY
POKE START ADDRESS + 2, WITH SPAN
POKE START ADDRESS + 4, WITH DURATION
POKESTART ADDRESS +23 WITH28 FOR UP OR 29 FORDOWN
An additional feature on routine 39 is wrap-around.
DUAL-NOTE SOUND-GEN—gives 2 sound channels.
POKE START ADDRESS + 7, WITH DURATION
POKE START ADDRESS + 18, WITH FIRST FREQUENCY
POKE START ADDRESS + 27, WITH SECOND FREQUENCY
UNI-BEEP SIMULATOR—a change from the ROM produced BEEP.
A laser zap is also available at 63950.
POKE START ADDRESS + 1, POKE START ADDRESS + 2, WITH
THE PITCH
POKE START ADDRESS + 4, POKESTART ADDRESS + 5, WITH
THE DURATION (63951 for the laser)
MULTI-BEEP SIMULATOR—this can give amazing effects.
POKE START ADDRESS + 1, WITH PITCH DECREMENT
POKE START ADDRESS + 2, WITH NUMBER OF NOTES
POKE START ADDRESS + 4 AND START ADDRESS + 5 WITH
THE PITCH
POKE START ADDRESS + 7 AND START ADDRESS + 8 WITH
THE DURATION IN MS.
OBLIQUE SCROLL-OFF
ALL-LEFT SCROLL
ALL-RIGHT SCROLL
HIGH RESOLUTION NW-DIAGONAL SCROLL
HIGH RESOLUTION NE-DIAGONAL SCROLL
HIGH RESOLUTION SE-DIAGONAL SCROLL
HIGH RESOLUTION SW-DIAGONAL SCROLL
More scrolls. Use as for routines 1-23 (47 is quite spectacular)
SCREEN PRINT |
Will print a character at any point on the screen, with any attri-
butes (not necessarily those preset by INK, PAPER etc). The
necessary POKE addresses are: '
INK START ADDRESS + 4; THIS IS PRESET AT 1
PAPER START ADDRESS + 10; THIS IS PRESET AT 6
FLASH START ADDRESS + 16; THIS IS PRESET AT 1
BRIGHT START ADDRESS + 22; THIS IS PRESET AT 1
INVERSE START ADDRESS + 28; THIS IS PRESET AT 0
OVER START ADDRESS + 34; THIS IS PRESET AT 0

AT START ADDRESS + 40 AND START ADDRESS + 43,
THIS IS PRESET AT 12, 10
CHR$ START ADDRESS + 46; THIS IS PRESET AT 42

55. RANDOM NUMBER GENERATOR
To call this routine, use let L=USR start address. A random
number between @ and 65536 will be placed in the system vari-

able SEED. It can be retrieved by print PEEK 23670 x 256+ PEEK
23671,

56. BLOCK MEMORY INSERT
This routine inserts a given number into a block of memory. In
the example used in the access program, the number 200 is in-
serted into the screen display. Addressese are:
POKE START ADDRESS + 1, WITH NO. OF BYTES |
POKE START ADDRESS + 3 & START ADDRESS + 4, WITHTHE
ADDRESS FOR CODE TO BE INSERTED
POKE START ADDRESS + 6, WITH THE CODE TO BE IN-
SERTED

57. BLOCK LINE DELETE
Lines of the program can be deleted with this code. Insert the
two-byte equivalent of the number of the first line to be deleted
into addresses 23728 and 23729. Then enter RANDOMIZE

(number of last line to be deleted), followed by RANDOMIZE
USR START ADDRESS.

58. CHRS SWAP
This routine swops all characters of a given code with all charac-
ters of a 2nd given code within the Basic Program.
POKE START ADDRESS + 1, WITH THE OLD CODE, AND
START ADDRESS + 3 WITH THE NEW CODE.]
For a list of the character codes see pages 183 to 188 of the
Spectrum Basic Handbook.

59. CHR$ SCRAMBLE
By POKEing 23606 & 23607 with different numbers, a corrupted
character set is obtained. This can be used to protect your Basic
Program. To normalise, POKE 23606, 0: POKE 23607, 60.

60. SUPER RENUMBER

Will renumber all GOTO, GOSUB, LIST, LLIST, RESTORE &
SAVE ... LINE statements. A list is produced of all calculated
GOTOs, GOSUBs etc. displaying their line and statement num-
bers. To change the interval between lines, POKE START AD-
DRESS + 286 WITH THE NEW VALUE (up to 255). To change
the first line number, POKE START ADDRESS + 288, AND
START ADDRESS + 289 WITH THE NEW NUMBER's two-byte
equivalent. Both values are initially set to 10.

If renumbering would result in line numbers greater than 9999
the interval and line number are both automatically set to 1.

61. 2BYTE CONVERTER
Routine in ROM. This routine permits instant conversion of a
number (X) from & to 656535 to its 2-byte equivalent. To convert
X to its 2-byte equivalent, enter RANDOMIZE X’ as a direct com-
mand. PEEK 23670 and PEEK 23671 to find the least significant
and most significant byte values respectively.
For example, the 2 byte equivalent of 54321 is 212 (most sig.) and
49 (least sig.) because 212 x 256 + 49 = 54321.

62. DEC-HEX CONVERTER

63. HEX-DEC CONVERTER
These two routines auto-repeat. Enter ‘Q’ to return to Basic. Inte-
gers between & and 65535 (HEX @ to FFFF) only are allowed.

64. REMKILL CONDENSER

Shortens and speeds up your program by deleting all REM state-
ments in it. Use this in conjunction with no.41 to determine the
number of bytes saved.

65. ON ERROR GOTO
Call this at the start of your program, say by-having as line 1, “1
RANDOMIZE USR START ADDRESS”. When your program is
run any error will not stop the program, but will cause a jump to
the program line number 9495. Here you can have any error
routine you fancy. To change the error line number from 9495,
POKE START ADDRESS + 52 AND POKE START ADDRESS +

53 with the two-byte equivalent of the new line number to be
jumped to.

66.

67.

68.

69.

71

12.

To find which error has occurred, peek 23681.

Error codes @, 8 and 9 are not trapped ie. they act in the normal
manner. Thisis because they are not really errors. Note that after
any error the machine stack is reset so that “RETURN"” will not
work.

ON BREAK GOTO
Similar to number 65, but only covering errors D(BREAK),
H(STOP IN INPUT), and L(BREAK INTO PROGRAM). To alter
the error line number, POKE START ADDRESS + 53 AND
START ADDRESS + 54 with the 2-byte equivalent of the required
line number.

FREE-SCROLLER
Routine in ROM. To scroll a screen greater than 22 lines long
automatically, include the statement ‘POKE 23692, 255' in your
program. To scrolla specified number oflines only, POKE 23692,
n where n is'the number of lines to be scrolled.

NON-DELETABLE LINES
Routine in ROM. In order to make the first line of your program
difficult to delete, POKE 23755, @: POKE 23756, @.

BORDER EFFECTS—Note this routine is non relocatable
Produces a colourful border effect. To customise, POKE:
a). 60006, WITH THE DURATION (From 1 to 127)

b). 60020, WITH THE COLOUR (From @to 7)
c). 60029, WITH THESPACEBETWEEN LINES (From 1 to 255).

. SCREEN SEARCH

Will find the character code at the position last printed at.
Enter: PRINT AT 7, 13;: LET L = USR START ADDRESS. Now L
is the required code.

VARIABLES LIST
To display all variables used in your program, enter

“PRINT; : RANDOMIZE USR START ADDRESS.” Useful with
routines 41 and 86.

24-LINE PRINTING
To print lists or text using all 24 lines onthe screzn, include POKE

23639, @ before each print instruction. At the end, POKE 23659,

2, and then use ‘PAUSE @’ to prevent the scroll command cor-
rupting the screen. Alternatively PRINT#40 and PRINT#1 com-
mands can also be used—but experiment first.

713. STAR/'TORUS DRAW
' Plot a mid-screen point, theri use DRAW x,y,n where x and y lie
between -60 and +60, and n is in the vicinity of 8K-10K. You will
be surprised—do experiment.

74. FLASH SWITCH
This routine sets every flashing square on the screen to steady
and every steady square to flashing. Contrast with routines 32/
23

715. BRIGHT SWITCH
As for 74, but with BRIGHT. Contrast with routines 34/35.

76. PAINT FILL—Note this routine is non relocatable
Draw a closed convex figure on the screen (the simplest exam-
ple of this is a CIRCLE). Plot a point within it, and POKE 59293
with the attribute value to be used for filling. Call using RAN-
DOMIZE USR START ADDRESS, and the area inside will be fil-
led; provided it is not too large (experiment with it).

77. RECORD SOUND

78. REPLAY SOUND
These two non relocatable routines require you to first CLEAR
32767. Call the first routine once you are supplying suitable
sound input (from your tape recorder/hifi system) to the EAR
input on your Spectrum. You have 5-10 seconds of recording
time. Replay is achieved by calling the second routine, which
will direct output both to the Spectrum speaker and to the MIC
socket, from which you can amplify the signal. Experiment with

levels to optimise sound quality, but expect no miracles. Routine
77 will overwrite everything from 32768 to immediately below
itself.

79. SCI-FI CHARACTER SET
POKE 23606/23607 with the less/more significant bytes of the
starting address of the set (which occupies 768 bytes) less 256.
You will be amazed at the change—POKE 23606, 0: POKE 23607,
60 to return to normal. As the code starts at 57344 (48K)/24576
(16K), the required POKE is 48K: POKE 23607, 223 '

16K: POKE 23607, 95

80. PROTECT PROGRAM

1).

2).

3).

4).

5).

6).

Introduce as line 1 a REM statement and then POKE 23755,
100. The program will work but will not LIST (until you POKE
231585, Q).

POKE 23636, 150 to make the program apparently vanish.
(POKE 23636, 92 to make it appear again).

Use INPUT LINE instead of INPUT — though you cannot now
erase quotes and enter STOP, CAPS SHIFT and 6 will cause
a BREAK.

Use routines 59 (CHR$ SCRAMBLE), 65/66 (ON ERROR/
BREAK GOTO) and 98 (CONFUSE).

Embed colour control characters (Chapter 16 of the manual)
immediately after the line number for the first line(s) of the
program. Set INK and PAPER to the same colour. Then
change the line numbers to @ (see routine 68).

Make your program autostart by SAVEing it with SAVE
“name” LINE Z, where Z is the first line that will be executed
when the program is LOADed. Make the first statements in
the line no.Z read as follows:

LET ERR=256 * PEEK 23614+PEEK 23613 : POKE ERR, @ :
POKE ERR+1, @.

The program will now crash if you try either to BREAK into
it, enter STOP for an INPUT or press CAPS SHIFT and 6 for
an INPUT.

81. BLOCK LINE COPY

A block of program lines can be copied to any other part of the
program. Simply “RANDOMIZE USR START ADDRESS” and fol-
low the prompts. The new lines will be given line number @, and
so the program should be renumbered to correct this, using

82.

83.

84.

85.

86.

81.

88.

Routine 60. Note that any GOTOs and GOSUBs etc. in the new
section of code will retain their original values. Any attempt to
copy a block to within itself, or to a line number greater than
9999, will result in error B, integer out of range.

CONTRACT PROGRAM
Using this machine code routine results in the program being
contracted into as few program lines as possible. This results in
a saving in space, and also allows the Basic Programto run faster.
The logic of the program is retained.

EXPAND PROGRAM
The opposite of ‘CONTRACT'. You are prompted for a line
number. The line whose number you enter will be expanded to
as many lines as possible, to enable easy editing. The new lines
will be given a line number of @, so the program must be renum-
bered afterwards to correct this. To expand the whole program,
press "ENTER” on being prompted for a line number.

EXPAND REM
Any REM statement can be expanded by up to an extra 9999
bytes. Just follow the prompts.

APPEND STATEMENT

Allows you to add extra statements to the end of a program line
without moving the cursor through the line. Fist move the edit
cursor to the appropriate line as usual, then Enter “RANDOMIZE
USR START ADDRESS". This will have the same effect as using
the edit key, exceptthat the cursor will be at the end of the line.

ANALYSE PROGRAM
RANDOMIZE USR START ADDRESS to find how many lines and

how many statements are in your program. Useful with Routines
41 and 71.

TAPE HEADER READER
Call the routine, then start your tape as though to load a program.
A full print of the header information will be given.

LINE ADDRESS

_ Move the edit cursor to any program line. Enter “PRINT USR
‘START ADDRESS” to find the address of the first character in the
line. - - |

89. SCREEN GRID
After this program has been called, the character squaresonthe
screen will become alternately bright and dark.
This checkerboard effect can be a help with ‘PRINT AT’ or
‘PLOT’ co-ordinates when designing a screen display.

90. MONOCHROME PROGRAM '
Removes all colours, FLASH, BRIGHT, OVER and INVERSE,
from the program listing, (thus saving space) unless they are
within strings.

91. ANALYSE MEMORY
Before using RANDOMISE USR POKE START ADDRESS + 9/ +
10 with the less/more significant bytes of the address from which
memory locations ar to be analysed. The columns produced are
address, contents in decimal and hex and CHRS value where
printable.

92. HEX LOADER

This routine can be used only when Routine 63 HEX-DEC CON-
VERTER is also in memory. POKE START ADDRESS + 10 and
+ 11 with the 2 byte equivalent of the start address of Routine 63.
POKE the system variable DEFADD (23563, 23564) with the less
and more significant bytes of the address of the first byte of
memory you want to load hex into. Now enter RANDOMIZE USR
START ADDRESS, and enter directly in hex (@ to FF hex). If you
enter more than two digits only the last two are evaluated. Press
Q to quit.

93. AWAIT KEYPRESS
Use in your programs eg. “30 LET X = USR START ADDRESS”.
This routine waits for a key (whose code will now be put in X) to
be pressed then continues with the key code in X.

94. UPPER CASE STRINGS
Will look through the program for strings and ensure they are
all in upper case characters. Watch our for INKEY$ prompts.

95. LOWER CASE STRINGS
As for 94, but changing to lower case characters.

- 96. UPPER CASE PROGRAM
Ensures thatall programlines (except strings) are inupper case.

97. LOWER CASE PROGRAM

The opposite of no. 96. However, keywords (PRINT, TAB, LET
etc) are still in upper case.

For routines 94 to 97, note that POKE 23658, @ (lower)/8 (upper)
allows you to shift the case from within the program itself.

98. CONFUSE LISTING
Changes all numbers (other than those in REMs or strings) in the
program listing to a randomm code to confuse the listing. The
program will still work properly, unless you attempt to edit/
change a line containing a number — in this case irreversible
corruption will result. This is very useful for program protec-
tion—include a copyright REM message at the end of a line con-
taining many important numbers. If someone attempts to delete

or change your copyright message, they will render the prog-
ram unusable.

99. UNCONFUSE LISTING

Undoes the effect of no. 98. The listing will now appear as normal,
except for any lines irreversibly corrupted, (see above.)

100. COMPRESS NUMBER
Will remove all unnecessary spaces from the program listing by
replacing any number X with ‘VAL “X’,’ except @ which is re-
placed by “NOT PI”. The program will still run normally. This

saves a lot of space (use no.41 to check this) but also slows down
the program.

